Programming - Methodology - Writing Solid Code

WHAT COULD I HAVE DONE TO HAVE PREVENTED THIS BUG?

0) use the hypothetical compiler to introduce every means of preventing bugs

1) use m_ for members, c_ for constants, l_ for locals, and a_ for arguments passed in, and g_ 4 globals

2) use full type name in lowercase, followed by NamedVariable

3) functions should be prepended with the return type, and be named in ALL_CAPS

4) crank up the warning level

5) use lint, soon enough you'll be writing lint level code

6) use the unit tests

7) Maintain debug and release versions of the program

8) use documented assert for #7 and ALL assumptions, but not for error conditions

9) don't exploit undefined library behavior

10) don't hide bugs when programming defensively

11) use a second debug only algorithm to validate critical system functionality

12) don't wait for bugs to happen, use startup checks

13) fortifying subsystems means substantial error checking is available for a one time cost

14) set allocated memory to 0xA3 to spot un-initialized variables

15) destroy freed memory with 0xDEADBEEF

16) force the rare to happen often

17) keep heap information in debug mode for stronger error checking

18) write debug code to actively search for problems in your code

19) every heap utilizing system should have a traversal function for checking for lost nodes

20) design your tests carefully, nothing should be arbitrary, all should help find bugs

21) step through all code paths after you write it

22) step through critical code in assembly

23) don't bury error codes in return values

24) multipurpose functions disallow strong argument validation

25) make function intelligible at the point of call

26) write comments that emphasize potential hazzards

27) use well defined and enforced data types

28) muse whether a variable can over or under flow

29) implement your design, not something that approximates it

30) strive to make every function perform it's task exactly one time

31) design cleanly to avoid special cases

32) avoid nested if's or ?: operators, consider switch or a table

33) size-- > 0 is less risky

34) you can't shift signed values, cast to unsigned and let the compiler do it

35) efficiency is the last concern

36) use parentheses for clarity and correctness

37) avoid calling functions that return errors

38) standards of languages are like tax codes, execution and obedience vary

39) write code for average maintenance programmers

40) Bugs don't just go away.

41) drag out old sources if you must to eliminate a bug permanently

42) fix as you go speeds learning, debugging, morale and visibility

43) fix causes, not symptoms

44) don't code meddle, your coworkers are not bozos

45) don't implement non-strategic features

46) ported code is new code

47) flexibility breeds bugs

48) read manuals

49) never allow the same bug to bite you twice

