Basics

1) Pointers should be checked against NULL, but references always are to ever present objects.

2) Prefer C++ style casts like static_cast<type> for C casts, const_cast<Type*> to cast away constness, dynamic_cast<Type*> between 1) derived and base 2) sibling base class types (check for null pointer after the cast), and reinterpret_cast<AnythingGoesCast*>

3) Never treat arrays polymorphically, since they always involve pointer arithmetic on types of varying sizes.

4) Avoid gratuitous default constructors that create meaningless objects forcing the usage of placement new, which can't be used with template based container classes.

Operators

5) Be wary of user defined conversion functions, and use “explicit” to make sure the compiler can't call constructors for you.

6) Distinguish between prefix (takes no arguments) and postfix (takes an unused argument) forms of increment and decrement operators .

7) Never overload &&, ||, or “,” since you have no way to guarantee the order of evaluation.

8) Understand the different meanings of new and delete: a) new operator, which is the usual b) operator new, where you ask for how many bytes you want c) placement new, call a constructor on a block of RAM already allocated d) array new, when you need a lot of an object and you have a default constructor e) use the version of delete corresponding to the version of new called

Exceptions

9) To prevent resource leaks and improve readability a) local functions: auto_ptr b) class members: reference counted, copy on write, or copied pointer c) STL containers: reference counted intrusive (pointed object has the count) or non-intrusive (all point to single object which has count and pointer) d) explicit ownership transfer: owned pointer e) big objects: copy on write

10) Prevent resource leaks in constructors with “const auto_ptr” members and member initialization.

11) Catch exceptions thrown in destructors to avoid terminate() being called for you.

12) Understand how throwing an exception differs from passing a parameter or calling a virtual function in three ways: a) Exception objects are always copied, and when caught by value copied twice whereas objects passed to functions need not be copied if by reference b) objects thrown as exceptions get fewer kinds of type conversion inflicted on them than objects passed to functions c) catch clauses examined by order whereas a virtual function is the best match for object type.

13) Catch exceptions by reference, and not value which causes copying or pointers to objects that might not exist.

14) Use exception specifications judiciously with set_unexpected() to throw an exception specified by you rather than an “unexpected exception” which results in termination.

15) If you don't use exception handling and clients of your code don't define derived classes or callbacks, then tell your compiler to leave it out. 5-10% size and speed overhead when you use “try/catch” blocks and exception specifications.

Efficiency

16) Remember the 80-20 rule, optimize late, and use varying inputs.

17) Consider using lazy evaluation with copy on write, distinguishing reads from writes, and lazy fetching.

18) Amortize the costs of expected computations

19) Understand the origin of temporary objects

20) Facilitate the return value optimization with inlining.

21) Overload to avoid implicit type conversions

22) Consider using op= instead of stand-alone op

23) Consider alternative libraries for potentially substantial speedups.

24) Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI/

Techniques

25) Virtualizing constructors and non-member functions

26) Limiting the number of objects of a class

27) Requiring or prohibiting heap based objects

28) Smart pointers

29) Reference counting

30) Proxy classes

31) Making functions virtual with respect to more than one object

Miscellany

32) Program in the future tense

33) Make non-leaf classes abstract

34) Understand how to combine c++ and C in the same program

35) Familiarize yourself with the language standard

Read the auto_ptr implementation

