C++ Gotchas – Stephen C. Dewhurst – ISBN 0-321-12518-5

Basics

1) Excessive Commenting – Trash all unnecessary, old, incorrect comments.  Use well-defined naming conventions for all variables, clear names, a one-liner that tells us what the function does, not how.

2) Magic Numbers – Use const and type to let compiler help you catch errors, while documenting your code.

3) Global Variables – They impede code reuse and make code hard to maintain, increasing coupling.  Consider a global accessor with an index to allow multiple environments.  Or use a Singleton.

4) Failure to Distinguish Overloading From Default Initialization – Overloading is for common abstract but different implementations.  Default initialization is for convenience. (Personal note: avoid default initialization).

5) Misunderstanding References – A reference is an alias for it's initializer.  

6) Misunderstanding Const – There are literals like “12”, there are variables, and there are const variables.

7) Ignorance of Base Language Subtleties – Logical operators yield boolean values, boolean logic, switch statements default to falling-through which when utilized should be commented, “?” and “:” logical operator is not-recommended but you should know it, p[2] is shorthand for *(p+2).

8) Failure to Distinguish Access and Visibility – Use forward declaration of class “bitshift” by declaring “class bitshift ;” in a forward declaration file bitshiftFWD.h, to avoid unneeded recompilation.  “Pimpl idiom” a.k.a. “Cheshire Cat technique” a.k.a. “Bridge Pattern” are also useful for cutting recompilation times, at a runtime cost.  

9) Using Bad Language

	Wrong
	Right

	Pure virtual base class
	Abstract class

	Method
	Member function

	Virtual method
	???

	Destructed
	Destroyed

	Cast operator
	Conversion operator

	NULL pointer ((char*) 0)  or ((void*) 0)
	0


	Acronym
	Meaning

	POD
	Plain old data, a C struct

	POF
	Plain old function, a C function

	RVO
	Return value optimization

	NRV
	Named RVO

	ctor
	Constructor

	dtor
	Destructor

	ODR
	One definition rule


10) Ignorance of Idiom – Use what works, with clarity.

11) Unnecessary Cleverness

12) Adolescent Behavior – Despite the abundance of childishness in the Software Development field, 1) Create quality 2) be dutiful to company and society 3) share tech expertise in ways that edify society 4) be collegial  5) share knowledge

Syntax

13) Array/Initializer Confusion – Make sure new paired with delete, and array new with array delete.

14) Evaluation Order Indecision – 1) Function argument order evaluation is platform specific 2) so is subexpression evaluation order 3) so is Placement New evaluation order

15) Precedence Problems – Please see http://www.cppreference.com/wiki/operator_precedence, and use parentheses and avoid the ternary operator.

16) for Statement Debacle – 1) watch for identically named variables to be used outside a “for” or “if” block 2) leave warnings on, in fact, crank them ever up 3) 

17) Maximal Munch Problems – The C++ compiler tokenizer's “Maximal Munch” behavior solves more problems than it causes, except:  1) Templates instantiated with arguments that themselves are templates, need whitespace to avoid an accidental shift operator list< vector<string> >.  2) Give names to arguments to document code, and avoid another “Maximal Much” problem.

18) Creative Declaration-Specifier Ordering – All that matters in “const” declarations, is which side of “*” it is on.  Left means data, right means pointer.  Use language that makes clear what is const.

19) Function/Object Ambiguity – Default object initialization which lacks arguments, can be confused with a function declaration by the compiler.  Always leave off parentheses when using the default object initialization.

20) Migrating Type-Qualifiers - “Const” and “volatile” are applied to types, not arrays of types.

21) Self-Initialization – Indiscriminate cutting and pasting might get you to initialize a variable with it's very own self!

22) Static and Extern Types – Are used for objects or functions, not types. No “static class” in C++.

23) Operator Overload Function Lookup Anomaly – Use infix syntax typically, except when function call syntax is more clear.  If an operator with the same name but wrong number of arguments is found in scope, the compiler won't look outside the immediate scope for something else, and will throw an error.

24) Operator → Subtleties – The overloaded function takes one argument.

Preprocessor 

25) #define Literals – Usage in C++ disallows type-checking, which means wrong functions could get called, among other things.  Use const instead.

26) #define Pseudofunctions – Use inline functions instead if you want speed.

27) Overuse of #if – Just “const bool bDebug = true” and use “if( bDebug ){ }” around debug code.  Use separate files for separate platforms, not #if.  Use separate classes for client/server, and not #if.

28) Side Effects in Assertions – Be sure (duh) not to call functions within assert().

Conversions

29) Converting through void* - Use reinterpret_cast to telegraph to your maintainers that you are casting in a potentially non-portable way.

30) Slicing – Occurs when a derived class object is copied onto a base class object, or passed by value.  To avoid this:  1) use references or pointers 2) use abstract base classes

31) Misunderstanding Pointer-to-Const Conversion - “const” appearing on the left of the “*” means const data, while “const” on the right of declaration means a const pointer:

char *p

= "Hello";
 // non-const pointer,







 // non-const data

const char *p 

= "Hello";
// non-const pointer,







// const data

char * const p

 = "Hello";
// const pointer,







// non-const data

const char * const p
= "Hello";
// const pointer,







// const data

32) Misunderstanding Pointer-to-Pointer-to-Const Conversion - 

int *** const cnnn = 0 ;
// n==3, signature == none, none, none

int ** const* ncnn = 0 ;
// n==3, signature == const, none, none

int * const** nncn = 0 ;
// n==3, signature == none, const, none

int const *** nnnc = 0 ;
// n==3, signature == none, none, const

const int *** nnnc = 0 ;
// n==3, signature == none, none, const

Examples of applications of rules:

nccn = cnnn ; // OK

ncnn = cnnn ; // OK

nncn = cnnn ; // error!

nnnc = cnnn ; // error!

Don't be psycho!  Use references!

33) Misunderstanding Pointer-to-Pointer-to-Base Conversion - Pointer to pointer to derived can't be assigned to pointer to pointer to base.

DerivedFromBaseClass d1 ;

DerivedFromBaseClass *d1p = &d1 ;
// OK

BaseClass **ppb1 = &d1p ; 

// error

34) Pointer-to-Multidimensional-Array Problems – Don't use multidimensional arrays.  Consider instead standard-library or special-purpose containers.

35) Unchecked Down Casting – Base class pointer casting to a derived class pointer a.k.a. down casting”  since you are casting down the class hierarchy, may result in a bad address without a dynamic_cast to perform a run time check.

36) Misusing Conversion Operators – 1) Dispense with conversion operators, and declare single-argument constructors explicit to avoid whenever possible implicit conversions.  2) Prefer use of constructors to convert from user-defined types.  3) User conversion operators to convert only to pre-defined types.

37) Unintended Constructor Conversion – Declare all constructor functions “explicit” to avoid subtle run-time only errors.

38) Casting under Multiple Inheritance – Use the non-portable reinterpret_cast if you must, but you should have gotten ye a better design.

39) Casting Incomplete Types – Use reinterpret_cast for forward declared types not available at compile time, but again, get ye a better design.  

40) Old-Style Casts – Don't do them, since you want to catch more errors at compile time with const_cast, static_cast, dynamic_cast, and reinterpret_cast.

41) Static Casts – We're talking static_cast, reinterpret_cast, const_cast, and old-style casts.  These, according to Scott Meyers of “Effective C++” fame amount to saying, “because I say so!” to the compiler.  Get ye a better design.

42) Temporary Initialization of Formal Arguments – Write functions to accept arguments by reference, not by value to avoid the construction of temporaries, and the associated function call overhead.

43) Temporary Lifetime – Have destructors memset() with 0xFD so rare multithread errors can be spotted more quickly when temporaries die sooner than you expect leaving sometimes there sometimes not memory. 2) Use explicit temporaries.

44) References and Temporaries – 1) Avoid returning a formal argument that's a reference to a constant, and instead return by value eating the extra cost.  2) Declare formal arguments to be references to non-const.

45) Ambiguity Failure of Dynamic_Cast - 

A is polymorphic having a virtual function, and only public nonvirtual inheritance is used.

(A)  (A)

  |       |

(B)  (C) 

  \      /

    \  /

    (D)

1) OK casting from either A to B

2) OK casting from either A to C

3) ERROR casting from D to A

A is polymorphic having a virtual function, and only public virtual inheritance is used.

    (A)

    /   \  

   /     \      

(B)  (C) 

  \      /

    \  /

    (D)

4) OK casting from either A to B

5) OK casting from either A to C

6) OK casting from D to A

46) Misunderstanding Contravariance - 1) The address of a data member of a particular object is a regular pointer.  2) A pointer to a member is not a regular pointer, but an offset to a specific member of an unspecified object.

Initialization

47) Assignment/Initialization Confusion – Initialization turns newly allocated space into a ready-to-function object.  Assignment is replacing existing object internals with the state of another object.  If new/delete are used in the default constructor/destructor, then new must also be used in a custom assignment operator and copy constructor implemented by you, unless you'd rather declare their prototypes private, that they not be implicitly called, and written by the compiler.

48) Improperly Scoped Variables – 1) Explicitly initialize at variable class construction to avoid silly errors, which also gives you the opportunity to declare it “const” helping you to document and secure your code. (Let the compiler optimize, or you, later on AFTER you get it working first).  2)  One variable, one purpose.  3) Scoping variables removes much of the temptation by you and others to reuse it.

49) Failure to Appreciate C++'s Fixation on Copy Operations – Copy and Assignment Constructors will be written by the compiler fr you if you don't provide them.  Either 1) Write them yourself, taking care with members that need “new” which will have “delete” called on them in the destructor.  2) Declare prototypes for both as “private” so the compiler can't write them when someone implicitly calls them.

50) Bitwise Copy of Class Objects – Please either let the compiler write a copy functions or copy constructors or assignment operators.  It will always handle vtables correctly, and it will always write faster code.

51) Confusing Initialization and Assignment in Constructors – Whenever possible, use the initialization facilities of the constructor.

52) Inconsistent Ordering of the Member Initialization List – The order in the initialization list of a constructor does not matter as much as you hope:  1) Firstly, virtual base class sub-objects.  2) Secondly, nonvirtual base classes, in their base class order list. 3) Thirdly, the members of the class in declaration order.

53) Virtual Base Default Initialization – Make all base classes virtual to simplify design, and their use as virtual base classes.

54) Copy Constructor Base Initialization – Derived constructor will first call the base constructor, and then move up to the derived constructor.  The derived destructor will do the opposite, calling the derived destructor, then the base destructor.  All operations can be implicitly written by the compiler until new/delete are employed, at that point, you write everything in that class hierarchy.

55) Runtime Static Initialization Order – Not guaranteed to be platform-independent. So:  1) Minimize the use of global variables and static class members.  2) Code the initialization order explicitly.

56) Direct Versus Copy Initialization – Use direct whenever possible.

57) Direct Argument Initialization – Pass by reference, not by value.

58) Ignorance of Return Value Optimizations - 

59) Initializing a Static Member in a Constructor

Memory and Resource Management

60) Failure to Distinguish Scalar and Array Allocation

61) Checking For Allocation Failure

62) Replacing Global New and Delete

63) Confusing Scope and Activation of Member new and delete

64) Throwing String Literals

65) Improper Exception Mechanices

66) Abusing Local Addresses

67) Failure to Employ Resource Acquisition Is Initialization

68) Improper Use of auto_ptr

Polymorphism

69) Type Codes

70) Nonvirtual Base Class Destructor

71) Hiding Nonvirtual Functions

72) Making Template Methods too Flexible

73) Overloading Virtual Functions

74) Virtual Functions with Default Argument Initializers

75) Calling Virtual Functions in Constructors and Destructors

76) Virtual Assignment

77) Failure to Distinguish Among Overloading, Overriding, and Hiding

78) Failure to Grok Virtual Functions and Overriding

79) Dominance Issues

Class Design

80) Get/Set Interfaces

81) Const and Reference Data Members

82) Not Understanding the Meaning of Const Member Functions

83) Failure to Distinguish Aggregation and Acquaintance

84) Improper Operator Overloading

85) Precedence and Overloading

86) friend versus Member Operators

87) Problems with Increment and Decrement

88) Misunderstanding Templated Copy Operations

Hierarchy Design

89) Arrays of Class Objects

90) Improper Container Substitutability

91) Failure to Understand Protected Access

92) Public Inheritance for Code Reuse

93) Concrete Public Base Classes

94) Failure to Employ Degenerate Hierarchies

95) Overuse of Inheritance

96) Type-Based Control Structures

97) Cosmic Hierarchies

98) Asking Personal Questions of an Object

99) Capability Queries

