Code Complete by Chapter

ISBN 1-55615-484-4

1) Effective Development = problem statement + requirements + design + construction + review + testing + feedback

2) Conceptualize with metaphors to gain understanding, plan well, and use good tools

3) Pay attention to quality and process to avoid costly rework

4) Plan with pseudo code, construct, and finally comment with same pseudo code. Use assertions.

5) Use well named, defensively programmed, cohesive, and loosely coupled procedures to manage complexity

7) Choose design and methodology according to the problem at hand.

8) Custom data structures and data types help design an appropriate, self-documenting solution.

9) Hungarian notation without abbreviations helps all, which speeds learning, review, and debugging.

10) Global variables are best avoided; otherwise use access routines.

10) Use each variable for one purpose, minimize its scope, live time, and shorten spans between each use.

11) Use checklists to make sure you’ve considered the common problems for each data type (pages 263-264).

12) Layered classes, and class hierarchies lessen complexity and increase maintainability, and speed design.

13) Make data dependencies obvious with good routine names, parameter names, and comments.

13) Further clarify data dependencies by shortening variable live time, scope, and span between each use.

14) Order a chain of ‘if’ and ‘case’ statements for readability and execution speed.

14) Use the default clause in ‘switch’ and the last ‘else’ to trap errors.

15) In loops, localize housekeeping, minimize nesting with functions, and clarify entries and exits.

15) Name loop indices clearly, and use them for nothing else.

15) Loops require good planning, assurances with ‘assert’, and verification of all entries and exits.

15) Sooner is better than later when it comes to solving any problem.

16) While ‘return’ enhances readability, use ‘goto’ to enhance readability only as a last resort.

17) Don’t necessarily rely on provided facilities of language or library if you can do better yourself.

17) Structured layering of methods, and testing with simple boolean expressions help minimize complexity.

18) Use a consistent layout to promote readability by illuminating local organization.

19) Simplify code to make comments less necessary. Comment on the ‘why’ not the ‘how’.

20) Many time saving tools can be made, the rest bought, so that work might go easier and faster afterward.

21) As project size increases, so do errors, so planning and communication efficiency must increase to compensate.

21) On large projects, create a process that facilitates communication.

22) Estimate multiple times to schedule properly then measure where the project is often to maintain perspective.

22) Treat programmers well. This also extends to using a project size appropriate level of configuration management.

23) Early and effective use and communication of chosen QA techniques, allow the lowest cost and least effort.

24) Code inspections find more errors than code reviews. Code reviews find more errors than system testing.

24) System testing and code readings of any kind find different kinds of errors; so do both.

25) Approach system and unit testing with as much planning and care as you approach construction.

26) Plan, build mindfully, use assert, set warning levels high, step through code, and unit test to prevent bugs.

26) Fix root causes of all resulting bugs to save continuous headache and costs.

27) Evolutionary delivery assures success, high visibility, higher morale, coder feedback, and better quality.

28) Ease performance tuning by writing well designed clean code that is easily understood and modified.

29) Measure code execution to find where optimization is needed, rewrite the inner loop, move on.

30) Requirements change an average of 25% over the average project. Plan for this cost early or pay later.

30) Everybody pays the piper, it’s just a question of when, and with how much interest.

30) Hard code nothing. Pay more now to save yourself later.

31) Develop the right habits of intellectual honesty, humility, discipline, and constant fidelity to the fundamentals.

31) Mind your habits, your character, and your studies, and you’ll get good very quickly in anything.

32) The development process and tools affect team management of complexity, which in turn affects quality.

32) Notice the origin of your thoughts, and your irritation level while you work. You are smarter than you know.

Software Development is a mental activity. Quiet all concerns to maximize throughput.

