Application Security Principles – paul_hinkle@symmantec.com
Security Principles

Security is a Process – Implement security early in lifecycle for less bugs and late nights

Validate ALL Application Input – Validate input as good and of proper length, document, penetration (penn) test

Understand Everything – Nail product requirements, avoid “rolling your own”, avoid complex regular expressions

Segmentation – Segment(data from logic+ data by privilege + application from environment)

Layered Security – Require an attacker to break multiple levels

Each Function must 1) validate all input 2)use external resources properly 3) handle exceptions 4) log 5) output

Stand-Alone Security – Functions or components should be able to resist direct assault independently

Least Privilege Principle – Always use least needed privilege, to limit attack (damage + privilege escalation)

Fail Securely – 1) prevent access when a component is disabled, prevent accidents from exposing valuable data

Good Security should be 1) free 2) unavoidable 3) transparent. Avoid obscurity and complexity.

Suppress messages from 1) errors 2) databases 3) debug 4) comments. Eliminate DB column names from markup

Security Measures and Considerations

Authentication – Process of verifying the ID of the entity (passwords, X.509 Certificates, Biometrics)

Authentication measures attacked first, since everyone has access to the login page. Two factor authentication = better

Authorization – Process of determining which rights to grant to an authenticated entity

Auditing – review central and local lean logs. Use Intrusion Detection Systems.

Secure communication != security, but it is critical though may complicate intrusion detection.

Integrity – hash important data

Nonrepudiation – strong authentication vital for linking actions to parties undeniably

Availability – load balancing+failover, packet filtering, throttling, resource self-monitoring, writing solid code

Threat Modeling and Vulnerability Identification

Identify Threat Paths - identify, prioritize, make data flow diagram DFD w/privilege boundaries, access categories

Identify All Security Strengths – multi-privilege OS, encryption, 2factor authentication, managed code, stack canary

Identify Access Categories – remote user(anon, authenticated, has file manipulation privileges) all local users

Identify Threat Path Entry Points and Privilege Boundaries – Add privilege boundaries, auth layers, net access controls, and entry points into DFD from 3 items up

Prioritize Discussion Based on Access Category – components in(remote anonymous threat path, behind auth layers)

Identify Threats – ID security critical processing in threat paths to determine overall threat profile

Determine Component Actions On Threat Path – What processing is performed? How auth done? Does it trust data or other components? What data does it modify? What external connections does it have?

Enumerate Potential Threats to Each Component – Mark high threat components for hardening like data parsing, file + database access, spawning of processes, authentication, authorization, session management, handling of private data

Identify Mitigating Security Measures – what security measures are in place in each component?

DetermineWhether the Threat is a Vulnerability – Can they be bypassed? Insufficient? In place? Correct?

Classify the Vulnerability – Spoof identity Tampering of data Repudiation Infodisclosure DOS Elevation of privilege

Rank and Remedy – prioritize for fixing, determine strategy, understand risk to make a risk chart, resolution roadmap

Identify Compounding Vulnerabilities – multi-level threats, leverage points, visualize scenarios. Many low-eisk scenarios may combine into one high-risk scenario

Session and State Management

Inactivity, overactivity, and logout invalidate sessionID. Hard to guess, random(not rand(), time(), username) use SSL

Don't store critical information on the client(IETF RFC 2964/2965). Hash client side data for integrity, symmetric encryption for secrecy and integrity, SSL for protection from 3rd parties.

Application Security Roadmap

REQUIREMENTS include a security section. Reach consensus that security is a must, not an option.

DESIGN Threat model each component. Apply requirements. Document everything to prove due dilligence.

CODE No ambiguous interfaces to flexible functions which breed bugs. Review code, penn test. Document choices.

TESTING Code inspection, walkthrough, or review.QA tests. Regression test suite. Document defects. 3rd party tests

MAINTENANCE provide doc, RESPOND 2 customer input.Use all or part of dev process for new code and mods.

Common Coding Errors That Lead to Privilege Elevation

Stack overflows prevented by careful input validation, and setting (the evvironment?) for a non-executable stack

SQL injection, Format String Attacks, Cross-Site Scripting are thwarted with input validation

Resource leaks are exposed by inspections, Rational Purify, stress testing.

Input Handling Strategies

Regular Expressions for pattern matching,validate(length,content against lists, known good characters) sanitize bad

Tools For Secure Development And Testing

Logging, Static code analyzers(lint), Dynamic code analyzers(Valgrind), Run-time tools(dmalloc,libsafe)

Web Proxies intercept and alter cookies, form fields, HTTP headers

Vulnerability scanners (Nessus, Typhon, Nikto, AppScan)

Fuzzers intercept and alter data semi-automatically to find resource leaks, calls to potentially dangerous functions

Port Scanners (Nmap, netcat) help isolate potential vulnerabilities in server configuration

Sniffers help debug application errors, Packet Generators generate/alter net traffic

Risk Management

Identify, Rate, Manage --> Eliminate, Mitigate, Accept, Transfer to a 3rd party library

Risk = Weighted Threat x Weighted Vulnerability x Asset Value

Fix biggest and cheapest to fix risks first, then big expensive to fix risks.

Penetration Testing

Attack the login mechanism, subvert the session management

There is an overlap between QA testing and security testing. UNIT TESTS!

Debug proxies allow evading of client side input through overly long input, omission of required fields, altered hidden fields, identity spoofing.

Attack login mechanism – unexpected input, default passwords on default accounts,'xploiting hidden fields, get your code executed by the SQL server through script injection.

Make session tokens unpredictable/cryptographically secure, and not sent in the clear.

Secure Design Considerations

Improper configuration causes significant percentage of exploited vulnerabilities.

No working accounts with default passwords.

Query the environment to see if it matches your expectations, then abort, proceed, or query for permission to reconfigure.

Prevent or discourage installation with an over-privileged account.

Patches need attention to dependencies, environment, configuration, restoring deleted files.

Make configuration simple and easy.

Application management program should have read/write access to configuration files, but the program should only have read access.

Remember the principle of least privilege. Only administrators should access configuration files.

Document configuration settings with security implications.

Admins need access to tools and info to secure the environment.

Does the application enforce strong password selection, password expiration, and account lockout on admin account?

Can the admin add arbitrary accounts?

If remote management is implemented, authenticate the client, use encryption.

Secure programming APIs should be minimal, narrow, input validated, inescapable.

Configurable logging with timestamp, source, destination for forensic readiness. Don't log credentials, sensetive data.

Protect log files. Distributed logging that is write only. Http://www.counterpane.com/secure-logs.html.

Labs

NetCat, Web Proxy, Stack Overflow,

<script language=”javascript”>

document.write(“Your Cookies: “+document.cookie);

</script>

Software Engineering References

Steve Maguire

Debugging the Development Process
Microsoft Press 1994

Watts Humphrey
A Discipline for Software Engineering
Addison-Wesley 1995

Watts Humphrey
Introduction to the Team Software Process
Addison-Wesley 1999

C. Hoffmeister
Applied Software Architecture

Addison-Wesley 2000

Kent Beck

Extreme Programming Explained

Addison-Wesley 1999

Security References

M. Bishop

The Threat From the Net

IEEE Spectrum 34(8) pp. 56-63 (Aug. 1997)

http://nob.cs.ucdavis.edu/~bishop/secprog/index.html
William Stallings
Network Security Essentials

Prentice Hall, 2000

Ulysses Black

Internet Security Protocols

Prentice Hall, 2000

Security References For Programmers

General

Michael Howard
Writing Secure Code

Microsoft Press 2002

Steve Bellovin
Shifting the Odds

www.research.att.com/~smb/talks
J. Saltzer

The Protection of Information in Computer Systems IEEE v63 n9, pp 1278-1308, 1975

web.mit.edu/Saltzer/www/publications/protection/index.html
Uttara Nerukar
Security Analysis and Design

www.ddj.com/articles/2000/0011d/0011d.htm
Adam Shostack
Security Code Review Guidelines
http://downloads.securityfocus.com/library/review.html
Aleph One

Smashing Stack 4 Fun and Profit
www.shmoo.com/phrack/Phrack49/p49-14
B. Schneier

Cryptographic Support for Secure Logs on Untrusted Machines

The Seventh USENIX Security Symposium Proceedings

USENIX Press, January 1998, pp. 53-62

http://www.counterpane/com/secure-logs.html
Linux/Unix

Thamer Al-Herbish
Secure UNIX Programming FAQ
http://www.whitefang.com/sup
David Wheeler
Secure Linux programming FAQ
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
P. Wood

Unix System Security
Chapter 4, Hayden Books, 1985

Windows

Keith Brown

Programming Windows Security
Addison-Wesley, 2000

Michael Howard
Designing Secure Web Based Applications for Microsoft

Java

Li Gong

Inside Java 2 Platform Security
Addison-Wesley, 1999

M. Pistoia

Java 2 Network Security, 2nd edition
Prentice Hall, 1999

J. Jaworski

Java Security Handbook

SAMS, 2000

Java Security User Guidelines
Security Code Guidelines
http://java.sun.com/security/seccodeguide.html
G. McGraw 12 rules for more secure Java
www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
Web-Based Programs

Lincoln Stein

WWW Security FAQ

http://www.w3.org/Security/faq/www-security-faq.html
Rasvan Peteanu
Best Practices For Secure Web Development

http://secinf.net/uplarticle/6/Best%20Practices%20for%20Secure%20Web%20Development.pdf
Testing

Pete Herzog

Open Source Security Testing Methodology Manual
www.ideahamster.org

http://www.isecom.org/projects/spsmm.shtml
W. Du and A. Mather
Vulnerability Testing of Software Systems Using Fault Injection

ftp://ftp.cerias.purdue.edu/pub/papers/kevin-du/du9802.ps
Requirements

D. Leffingwell
Managing Software Requirements
Addison Wesley, 2000

Robertson and Robertson
Mastering the Requirements Process
Addison-Wesley, 1999

FIPS PUB 140-1
Security Requirements for Cryptographic Modules
FIPS, 1994

Robertson and Robertson
Volere Requirements Specification Template

http://www.systemsguild.com/GuildSite/Rovs/Template.html
Environment

G. McGraw

Software Security Principles

http://www.ibm.com/security
Michael Howard
Designing Secure Web Based Applications for Windows 2000
Microsoft Press, 2000

David Wheeler
Secure Linux programming FAQ
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
Installation

Peter Gutmann
A WfW security curiosity
news://hks.lists.cypherpunks

www.cs.auckland/ac/nz/~pgut001/pubs/wfwsys.txt

January 17, 1996

Michael Howard
Designing Secure Web Based Applications for Windows 2000
Microsoft Press, 2000

David Wheeler
Secure Linux programming FAQ
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
Michael Howard
Writing Secure Code

Microsoft Press 2002

Robertson and Robertson
Mastering the Requirements Process
Addison-Wesley, 1999

Inputs

Steve Maguire
Writing Solid Code

Microsoft Press 1993

Steve McConnell
Code Complete

Microsoft Press 1993

David Wheeler
Secure Linux programming FAQ
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
Security Focus
IIS and PWS Extended Unicode Directory Traversal Vulnerability
bugtraq ID 1806

www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
Michael Howard
Writing Secure Code

Microsoft Press 2002

Processing

Steve Maguire
Writing Solid Code

Microsoft Press 1993

Steve McConnell
Code Complete

Microsoft Press 1993

David Wheeler
Secure Linux programming FAQ
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
William Stallings
Network Security Essentials

Prentice Hall, 1999

K. Moore

Use of HTTP State Management

Internet Society RFC 2964

ftp://ftp.isi.edu/in-notes/rfc2964.txt, 2000

D. Kristol

HTTP State Management

Internet Society RFC 2965

ftp://ftp.isi.edu/in-notes/rfc2965.txt, 2000

Secure Development Practices

Adam Shostack
Security Code Review Guidelines

www.homeport.org/~adam/review.html
Pete Herzog

Open Source Security Testing Methodology Manual
www.ideahamster.org

http://www.isecom.org/projects/spsmm.shtml
W. Du and A. Mather
Vulnerability Testing of Software Systems Using Fault Injection

ftp://ftp.cerias.purdue.edu/pub/papers/kevin-du/du9802.ps
Steve Maguire
Writing Solid Code

Microsoft Press 1993

Secure Coding

David Wheeler
Secure Linux programming FAQ
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
Lincoln Stein

WWW Security FAQ

http://www.w3.org/Security/faq/www-security-faq.html
Adam Shostack
Security Code Review Guidelines

www.homeport.org/~adam/review.html
Wallace, Peng, Ippolito Software QA: Documentation and Reviews http://hissa.nist.gov/pubs/sqa.html
Best Practices of Web Development
www.developer.com/tech/article.php/640861
Outputs ftp://ftp.isi.edu/in-notes/rfc2964.txt

 HYPERLINK "ftp://ftp.isi.edu/in-notes/rfc2965.txt"
ftp://ftp.isi.edu/in-notes/rfc2965.txt
Secure Development Practices
www.homeport.org/~adam/review.html
Format String Attacks

www.security-archive.merton.ox.ac.uk/bugtraq-200009/0217.html
Secure Programming

www.securityfocus.com/forums/secprog/secure-programming.html
Foundational Proof-Carrying Code
www.cs.princeton.edu/~appel/papers/fpcc.pdf
Aleph One

Smashing Stack 4 Fun and Profit
www.shmoo.com/phrack/Phrack49/p49-14
David Litchfield
Exploting Windows NT 4 Buffer Overruns
www.atstake.com/research/reports/wprasbuf.html
Tim Newsham
Format String Attacks
security-archive.merton.ox.ac.uk/bugtraq-200009/0217.html

MacDonald & Osborne
Globbing Vulnerabilities in Multiple FTP Daemons

www.pgp.com/research/covert/advisories/048.asp
Todd Miller and Theo de Raadt
strlcpy and strlcat Consistent, Safe, Stirng Copy and Concatenation

www.openbsd.org/papers/strlcpy-paper.ps
Rain Forest Puppy

How I Hacked Packetstorm
www.wiretrip.net/rfp/p/doc.asp?id=42
Bruce Schneier
Applied Cryptography 2nd edition

David Wagner
List of Random Generation Resources
www.cs.berkeley.edu/~daw/rnd
Rain Forest Puppy
Perl CGI Problems
Phrack' magazine, issue 55, article 7

www.insecure.org/news/P55-07.txt
Library for Parallel Monte Carlo Computations
Scalable Parallel Random Number Generators

Ryan and Schneider
Modeling and Analysis of Security Protocols
ISBN 0-201-67471-8

Michal Zalewski
Delivering Signals for Fun and Profit

http://archives.neohapsis.com/archives/bugtraq/2001-05/0274.html
Exploting Format String Vulnerabilities
www.team-teso.net/articles/formatstring/
Michael Howard
Writing Secure Code

Microsoft Press 2002

Tools

Fuzz Testing of Application Reliability
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
David Wheeler
Secure Linux programming FAQ
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
Security Basics
http://www.securityfocus.com/archive/105
Computer Systems Lab Documentation
http://www.cs.wisc.edu/twiki/bin/view/CSDocs
Safe Kernel Extensions Without Run-Time Checking
http://www.cs.cmu.edu/~petel/papers/pcc/osdi/osdi.html
Scaling Proof-Carrying Code to Production Compilers and Security Policies

http://www.cs.princeton.edu/sip/projects/pcc/whitepaper/
