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Security Principles

Security is a Process – Implement security early in lifecycle for less bugs and late nights

Validate ALL Application Input – Validate input as good and of proper length, document, penetration (penn) test

Understand Everything – Nail product requirements, avoid “rolling your own”, avoid complex regular expressions

Segmentation – Segment(data from logic+ data by privilege + application from environment)

Layered Security – Require an attacker to break multiple levels

Each Function must 1) validate all input 2)use external resources properly 3) handle exceptions 4) log 5) output

Stand-Alone Security – Functions or components should be able to resist direct assault independently

Least Privilege Principle – Always use least needed privilege, to limit attack (damage + privilege escalation)

Fail Securely – 1) prevent access when a component is disabled, prevent accidents from exposing valuable data

Good Security should be 1) free 2) unavoidable 3) transparent.  Avoid obscurity and complexity.

Suppress messages from 1) errors 2) databases 3) debug 4) comments.  Eliminate DB column names from markup

Security Measures and Considerations

Authentication – Process of verifying the ID of the entity ( passwords, X.509 Certificates, Biometrics )

Authentication measures attacked first, since everyone has access to the login page.  Two factor authentication = better

Authorization – Process of determining which rights to grant to an authenticated entity

Auditing – review central and local lean logs.  Use Intrusion Detection Systems.

Secure communication != security, but it is critical though may complicate intrusion detection.

Integrity – hash important data

Nonrepudiation – strong authentication vital for linking actions to parties undeniably

Availability – load balancing+failover, packet filtering, throttling, resource self-monitoring, writing solid code

Threat Modeling and Vulnerability Identification

Identify Threat Paths -  identify, prioritize, make data flow diagram DFD w/privilege boundaries, access categories

Identify All Security Strengths – multi-privilege OS, encryption, 2factor authentication, managed code, stack canary

Identify Access Categories – remote user(anon, authenticated, has file manipulation privileges) all local users

Identify Threat Path Entry Points and Privilege Boundaries – Add privilege boundaries, auth layers, net access controls, and entry points into DFD from 3 items up

Prioritize Discussion Based on Access Category – components in( remote anonymous threat path, behind auth layers )

Identify Threats – ID security critical processing in threat paths to determine overall threat profile

Determine Component Actions On Threat Path – What processing is performed? How auth done? Does it trust data or other components? What data does it modify? What external connections does it have?

Enumerate Potential Threats to Each Component – Mark high threat components for hardening like data parsing, file + database access, spawning of processes, authentication, authorization, session management, handling of private data

Identify Mitigating Security Measures – what  security measures are in place in each component?

DetermineWhether the Threat is a Vulnerability – Can they be bypassed? Insufficient? In place? Correct?

Classify the Vulnerability – Spoof identity Tampering of data Repudiation Infodisclosure DOS Elevation of privilege

Rank and Remedy – prioritize for fixing, determine strategy, understand risk to make a risk chart, resolution roadmap

Identify Compounding Vulnerabilities – multi-level threats, leverage points, visualize scenarios. Many low-eisk scenarios may combine into one high-risk scenario

Session and State Management

Inactivity, overactivity, and logout invalidate sessionID. Hard to guess, random(not rand(), time(), username) use SSL

Don't store critical information on the client(IETF RFC 2964/2965). Hash client side data for integrity, symmetric encryption for secrecy and integrity, SSL for protection from 3rd parties.

Application Security Roadmap

REQUIREMENTS include a security section. Reach consensus that security is a must, not an option.

DESIGN Threat model each component. Apply requirements. Document everything to prove due dilligence.

CODE No ambiguous interfaces to flexible functions which breed bugs. Review code, penn test. Document choices.

TESTING Code inspection, walkthrough, or review.QA tests. Regression test suite. Document defects. 3rd party tests

MAINTENANCE provide doc, RESPOND 2 customer input.Use all or part of dev process for new code and mods.

Common Coding Errors That Lead to Privilege Elevation

Stack overflows prevented by careful input validation, and setting (the evvironment?) for a non-executable stack

SQL injection, Format String Attacks, Cross-Site Scripting are thwarted with input validation

Resource leaks are exposed by inspections, Rational Purify, stress testing.

Input Handling Strategies

Regular Expressions for pattern matching,validate(length,content against lists, known good characters) sanitize bad

Tools For Secure Development And Testing

Logging, Static code analyzers(lint), Dynamic code analyzers(Valgrind), Run-time tools(dmalloc,libsafe)

Web Proxies intercept and alter cookies, form fields, HTTP headers

Vulnerability scanners (Nessus, Typhon, Nikto, AppScan)

Fuzzers intercept and alter data semi-automatically to find resource leaks, calls to potentially dangerous functions

Port Scanners (Nmap, netcat) help isolate potential vulnerabilities in server configuration

Sniffers help debug application errors, Packet Generators generate/alter net traffic

Risk Management

Identify, Rate, Manage --> Eliminate, Mitigate, Accept, Transfer to a 3rd party library

Risk = Weighted Threat x Weighted Vulnerability x Asset Value

Fix biggest and cheapest to fix risks first, then big expensive to fix risks.

Penetration Testing

Attack the login mechanism, subvert the session management

There is an overlap between QA testing and security testing.  UNIT TESTS!

Debug proxies allow evading of client side input through overly long input, omission of required fields, altered hidden fields, identity spoofing.

Attack login mechanism – unexpected input, default passwords on default accounts,'xploiting hidden fields, get your code executed by the SQL server through script injection.

Make session tokens unpredictable/cryptographically secure, and not sent in the clear.

Secure Design Considerations

Improper configuration causes significant percentage of exploited vulnerabilities.

No working accounts with default passwords.

Query the environment to see if it matches your expectations, then abort, proceed, or query for permission to reconfigure.

Prevent or discourage installation with an over-privileged account.

Patches need attention to dependencies, environment, configuration, restoring deleted files.

Make configuration simple and easy.

Application management program should have read/write access to configuration files, but the program should only have read access.

Remember the principle of least privilege.  Only administrators should access configuration files.

Document configuration settings with security implications.

Admins need access to tools and info to secure the environment.

Does the application enforce strong password selection, password expiration, and account lockout on admin account?

Can the admin add arbitrary accounts?

If remote management is implemented, authenticate the client, use encryption.

Secure programming APIs should be minimal, narrow, input validated, inescapable.

Configurable logging with timestamp, source, destination for forensic readiness. Don't log credentials, sensetive data.

Protect log files.  Distributed logging that is write only. Http://www.counterpane.com/secure-logs.html.

Labs
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