Programming - Methodology - OO Modeling and Design

ISBN 0-13-629-841-9

Prentice Hall 1991

James Rumbaugh, Michael Blaha, William Premerlani, Fredrick Eddy, William Lorensen

I. Analysis – builds a real world model

1. Problem Statement

1. what needs be done, not how

2. interview client and nail down needs while least expensive

2. Object Modeling - identify static structures and organize into workable pieces

1. identifying object classes - extract things and concepts from step Analysis I. Part A.

2. Keeping the right classes

1. remove redundant classes

2. remove irrelevant classes

3. remove vague classes

4. names of objects probably should be attributes

5. names that describe operations should be methods

6. roles of classes should be attributes

2. Preparing a Data Dictionary

3. Identify associations between classes

4. Keep the right associations

1. remove associations between eliminated classes

2. remove irrelevant associations

3. remove implementation associations

4. remove actions, save that for the dynamic model

5. remove ternary associations and instead break into two binary associations

6. remove derived associations based on attributes and associations

7. add missing associations

5. identify class attributes

1. remove attributes that should be objects

2. remove identifiers outside the application domain

3. remove attributes that belong on links

4. remove internal states of an objects, only external states for now

5. remove attributes that complicate the function of a class into another class

6. Refine with inheritance

1. add subclasses when you find adjectives

2. remove subclasses that do not affect behavior, then it's just an attribute

7. Testing access paths for sensible results

8. Iterate object modeling

1. Add classes by analogy to eliminate asymmetries

2. Add classes to eliminate diverse class functions

3. Add classes to generalize more cleanly

4. Add class to give an operation a good target class

5. Add superclass to eliminate duplicate associations

6. Add class to denote a role of an object

7. Remove class when lack of attributes, operations, and associations

8. Add association when need access path for an operation

9. Group classes into modules

3. Dynamic Modeling – time dependent input behavior “when it happens”

1. prepare scenarios of typical interaction sequences

2. mock up a user interface

3. identify events between objects and prepare an event trace for each scenario

4. build a state diagram for each class

5. match events between objects to verify consistency

4. Functional Modeling - which values depend on which values, and needed functions. “What happens” Data flow diagram

1. identify input and output events from the problem statement I.A.

2. build a data flow diagram showing how each output value is computed at input
3. describe each function

4. identify constraints/invariants on input or output values from functions

5. specify optimization criteria

5. Adding Operations

1. Object Model - make accessors functions for attributes

2. Dynamic Model - each event sent to an object corresponds to a class method

3. Dynamic Model - actions in the state diagram C.3. may be functions

4. Functional Model - organize functions into operations on objects

5. Simplify operations

6. Iterate Analysis

II. System Design – determines overall architecture of system

1. Analysis was 'what', Design is 'how'

2. Breaking a system into subsystems

1. Layers – to bridge the conceptual gap between top and bottom layers

1. open architecture – any lower level can be called

2. closed architecture – only the level immediately below can be called

2. Partitions – in an operating system we have a file system, process control, memory management, etc. which have little dependency on each other

3. System Topology - identify what subsystems interact with which others

3. Identify Concurrency - what is concurrent, and what is exclusive

1. what receives events simultaneously but do not interact with each other

2. define concurrent tasks for placement into separate threads

4. Allocating Subsystems to Processors and Tasks

1. estimate hardware resource requirements

2. hardware/software trade-offs

3. allocate tasks to processors

4. determine physical connectivity

5. Management of Data Stores - use a RDBMS or not?

6. Handling of Global Resources with Locks and Guardians

7. Choosing Software Control

1. procedure driven

2. event/callback driven

3. concurrent

4. external event or internal event driven

5. combinations of above, or new paradigms?

8. Handling Boundary Conditions

1. Initialization

2. Termination

3. Failure

9. Set Trade-Off Priorities for cheapness, reliability, and speed...pick two

10. Common Architectural transformation

1. compiling

1. heavy on functional model

2. no user interaction while things are running

3. break the transformation into stages

2. continuous transformation - graphics viewer (functional and object modeling)

3. interactive interface - GUI programs (dynamic model)

4. dynamic simulation - video games (object model)

5. real time system design - get another book that covers this

6. transaction manager - airline reservation systems

1. object model is most important

2. dynamic model also important for estimating transaction throughput

3. usually you can use a RDBMS

4. Steps in design

1. map object model into a database

2. determine units of concurrency which cannot be shared and introduce classes as needed

3. determine the unit of transactions on the RDBMS that succeeds or fails entirely

4. concurrency control for transactions during failed attempts

III. Object Design – decide upon data structures and algorithms

1. Combine the three models to obtain operations on classes

2. Design algorithms to implement operations

3. Optimize access paths to data

4. Implement control for external interactions

5. Adjust class structure to increase inheritance

6. Design associations

7. Determine object representation

8. Package classes and associations into model

9. choose algorithms

IV. Relational Databases

1. General Concepts

1. crash recovery

2. sharing between users

3. sharing between applications

4. security

5. integrity

6. extensibility

7. data distribution

