Head First Software Development

by Tracey Pilone and Russ Miles

ISBN-13: 978-0-596-52735-8

1) Great Software Development: Pleasing your customer - Don't "big bang" develop, iterate through customer prioritized QUALITY mini-projects with feedback towards the changing  requirements.

2) Gathering Requirements: Knowing what the customer wants - EXAMINE what people really do and want done for customer oriented requirements and play consensus poker to coverge on under 30 preferably 15 day mini-projects free of assumptions/risks, to estimate total development time

3) Project Planning: Planning for success - "Velocity" (% of time lost 0.7 to start) divided 0-100 prioritized (50+ is for the next milestone) pokered task times summed then divided by developers in each iteration.  30 calendar days = 20 work days x Velocity =14 days.

4) User Stories And Tasks: Getting to the real work - Break each story into timed checksummed tasks put on Board = (Stories with stickied tasks + "In Progress" "Complete" task sections, milestone burn down graph, and "next" "completed" story sections, integrate unplanned interruption tasks).  Daily standup no-shy 15min meetings = update board. 

5) Good-Enough Design: Getting it done with great design - 1 object has 1 responsibility verified by SRP=Cohesion (Single Responsibility Principle) analysis (The [class] [method(s)] itself) of all methods.  DRY (Dont Repeat Yourself) is also part of "Good Enough" (not Perfect) design.

6) Version Control: Defensive development - Use Version Control and tags and branches to track versions and releases.

6.5) Building Your Code: Insert tab a into slot b - Use make, cmake, ant, maven, something IDE independent to reference libs, run the app, generate docs, check out/update code, run tests, copy builds to archives, etc...

7) Testing and continuous integration: Things fall apart - Black Box Testing tests functionality, input validation, output, state transitions, boundary/off by one errors.  Grey Box Testing tests logs, sent data, checksums, timestamps, cleanup of scraps.  White Box Testing tests all branches, error handling, documentation fidelity, proper handling of resource constraints.  Write suite of automatic tests (2 to 3 times as much testing code as production code), and get free regression testing quick and thorough, latter on every check in (CruiseControl).

8) Test-Driven Development: Holding your code accountable - Test First = Red, Green, Refactor.  1) Write test as example of usage of your code with plenty of assert statements (it must fail RED to even compile, since you wrote no code for it yet).  2) Write SIMPLEST code necessary to get test to pass GREEN.  3) Refactor to clean duplication, ugliness, old code, ...  Habits: 1) each test is for one unit of functionality 2) if your testing framework has setup and teardown methods, use them to avoid duplicate code.  Mock test objects. 3) Keep tests in mirror directory.  Use "Strategy" design pattern for abstract base of test and actual class.

Testing produces: 1) prod code in one place, test code in another 2) usually acts the same in debug and prod 3) loosely coupled (via interfaces) highly cohesive (each class does one thing) code.

Find a mock object framework to save yourself mucho typing.

Find "TDD Antipatterns"

9) Ending an Iteration: It's all coming together - Hire testers to system test the last iteration, as developers work on the next.

Effective Testing top 10:

1) good, frequent communication

2) accurate docs used for development

3) big picture view

4) cooperation between testing and development

5) testing automation

6) customer communication

7) zero bugs = almost done

8) document old and new tests

9) start and end state of system

10) communication!

Track bugs in a bug tracker (Bugzilla, Mantis), and fill it out, development taking care to add a test that exposes the bug.  Iteration review at end of iteration.

Iteration Review:

1) get team input, and discuss what you know went wrong

2) not a whining session, address things going forward

3) calculate and distribute metrics

4) ask standard questions - is everyone happy w/quality of work? Docs? Testing? - pace of the iteration? - Is everyone comfortable with the area of the system they are working in? - Best/worst/new tools?  - Process effective? Reviews conducted? Any process changes to consider?  - Any code that (has performance problems) or (needs refactoring)? - Any bugs we should discuss before prioritization? - Sufficient test coverage? - Deployment of system repeatable?  Be story driven with priorities on eachwith changes.

Don't punish people for finishing early.  Let them get ahead, or learn something new.

10) The Next Iteration: If it ain't broke, you still better fix it - what your customer wanted a month ago is not what they want now.  Recalculate velocity, and multiply by developer days to get amount of work do-able in next iteration.  Trust no 3rd party code until you have tested it.

11) Bugs: Squashing bugs like a pro - Big impact screwup means TALKING
TO THE CUSTOMER.

Broken code to-dos:

1) create a place in your bug tracker for issues 

2) organize the code into src, test, docs, ...

3) write a build script

4) put the code into your repository

5) integrate your code into CI (Continuous Integration) configuration

6) write tests simulating how you need to use the software

7) file bugs for issues you find, NOT EVERYTHING

IF 30% of all tests failing, THEN "Spike Test" (better only than a pure guess) to estimate fixing the system by working on 30% for a given amount of time, then extrapolating from there how long multiplying by the average of developer gut feeling on the estimate (50% confidence means double the extrapolation)

12) The Real World: Having a process in life - Minimize disruptions, measure changes, value people.

Additional resouces:

1) Head First PMP

2) http://tech.groups.yahoo.com/group/testdrivendevelopment/

3) Head First Object-Oriented Analysis and Design

4) http://www-306.ibm.com/software/awdtools/rup/

5) http://www.agilealliance.org

Standup Meeting Tips:

- 10 people or less

- literally stand, to keep under 15 minutes, 30 if you have to

- mandatory, early, same time, same place

- stakeholders onl

- honest talk

- report on what you did yesterday, what you're doing today, and what's holding you up

- after the meeting with bigger problems

- build cameraderie, WORK TOGETHER

Type out end of chapter bullets

