Head First Design Patterns
ISBN 0-596-00712-4

Eric and Elizabeth Freeman
Introduction
1) Slow down. The more you understand, the less you memorize.

2) Do the exercises. Write your own notes. Physical activity while learning increases learning.

3) Make this the last thing you read before bed, so your brain can post-process the data without loss inducing interruptions.

4) Drink water, lots of it, to maintain energy level, and increase cognitive function.

5) Talk about it out loud to increase the chance of learning.

6) Back off when your brain feels overloaded. You won’t learn more.

7) Feel something when studying, which will increase chances of recall.

8) DO SOMETHING with what you learn, which will increase chances of recall.

http://www.wickedlysmart.com/headfirstdesignpatterns/code.html
Chapter 1 – Welcome to Design Patterns
What drives change?

1) new functionality

2) new middleware

3) new suppliers

4) urge to stop getting bug bit

5) new platforms

6) memory or CPU requirements

The Strategy Pattern encapsulates each instance as a subtype of a uniform interface, and thus makes them interchangeable. Strategy lets the algorithm vary independently from clients that use it.

Encapsulation shields change in one part of code from altering the workings of another. Therefore, pull what varies out of the class being encapsulated.

	Programming to an implementation

(the usual)
	Programming to an interface

(better)
	Runtime implementation assignment

(best)

	Dog d = new Dog

d.bark

	Animal a = new Dog

a.make_sound()

	Animal a = getAnimal()

a.make_sound()

By encapsulating actions into subtypes of interfaces, you get the benefits of reuse w/o maintenance hassle.
1) Thus, other types of objects can reuse our subtyped actions of interfaces, because they are no longer hidden away in concrete classes.

2) We can add new subtyped actions of interfaces without modifying any of our existing behavior classes, or touching any of the classes that use subtyped actions of interfaces.
Compose with subtyped actions of interfaces, and inherit not.
Chapter 2 – The Observer Pattern
The subject publishes to subscribed observers until they unsubscribe.
The Observer Pattern defines a one to many dependency between objects so that when one object changes state, all of its dependents are notified and updated automatically.

	<<interface>>

Subject

registerObserver()

removeObserver()

notifyObservers()

	<<interface>>

Observer

Update()

	Concrete Subject

registerObserver()

removeObserver()

notifyObservers()

	Concrete Observer

Update()

Chapter 3 – Decorating Objects

Classes should be open for extension, but closed for modification.

Decorators

1) have same type as objects they decorate

2) you can use one or more decorators to wrap an object

3) given that the decorator has the same type as the object it decorates, we can pass around a decorated object in place of the original wrapped object

4) the decorator adds its own behavior either before and/or after delegating to the object it decorates to do the rest of the job

5) objects can be decorated at any time, so we can decorate objects dynamically at runtime with as many decorators as we like
The Decorator Pattern attaches additional responsibilities to an object dynamically. Decorators provide a dynamic alternative to compile time subclassing for extending functionality.

	[COMPONENT]

public abstract class Beverage{

 string description = “unknown”

 public String getDescription() {

 return description;

 }

 public abstract double cost();

}
	

	[CONCRETE COMPONENT]

public class Espresso extends Beverage {

 public Espresso() {

 description = “Espresso”

 }

 public double cost() {

 return 1.99 ;

 }

}
	[ABSTRACT DECORATOR]

public abstract class CondimentDecorator extends Beverage {

 public abstract String getDescription();

}

	[CONCRETE COMPONENT]

public class HouseBlend extends Beverage {

 public HouseBlend () {

 description = “HouseBlend”

 }

 public double cost() {

 return .89 ;

 }

}
	[CONCRETE DECORATORS]

public class Mocha extends CondimentDecorator {

 Beverage beverage;

 public Mocha(Beverage beverage) {

 this.beverage = beverage ;

 }

 public String getDescription() {

 return beverage.getDescription() + “, Mocha”;

 public double cost() { return .20 + beverage.cost() ; }

}

Chapter 4 – The Factory Pattern
Defines an interface for creating an object, but lets subclasses decide which class to instantiate.

Design Principle: Depend on abstractions. Do not depend on concrete classes unless they never change.

a) no variable should hold a reference to a concrete class. Use a factory to get around the use of “new”

b) no class should derive from a concrete class, lest you depend on a concrete class. Derive from an abstraction like an interface or abstract class.

c) no method should override an implemented method of any of it’s base classes
The Abstract Factory Pattern provides an interface for creating families of related or dependent objects without specifying their concrete classes.
Chapter 5 – The Singleton Pattern
Ensures a class has only one instance, and provides a global point of access to it.

	public class Singleton {

 private static Singleton() { }

 public static synchronized Singleton getInstance() {

 if(uniqueInstance == null) {

 uniqueInstance = new Singleton() ;

 }

 return uniqueInstance;

}

Options

1) do nothing of the performance of getInstance() isn’t critical to your application.

2) use an eagerly created instance

	public class Singleton {

 private static Singleton uniqueInstance = new Singleton();

 private Singleton() {}

 public static Singleton getInstance() {

 return uniqueInstance;

 }

}

3) use “double-checked locking” to reduce use of synchronization

	public class Singleton {

 private volatile static Singleton uniqueInstance ;

 private Singleton() {}

 public static Singleton getInstance() {

 if(uniqueInstance == null) {

 synchronized (Singleton.class) {

 if(uniqueInstance == null) {

 uniqueInstance = new Singleton() ;

 }

 }

 }

 return uniqueInstance ;

}

Chapter 6 – The Command Pattern
Encapsulates a request as an object, thereby letting you parameterize other objects with different requests, queue or log requests, and support undoable operations.

public interface Command {

public void execute();

}

public class LightOnCommand implements Command {

Light light ;

public LightOnCommand(Light light) {

this.light = light ;

}

public void execute() {

light.on();

}

}

Chapter 7 – Adapter and Facade Patterns
The Adapter Pattern converts the interface of a class into another interface a client expects. Adapters let classes work together that could not otherwise because of incompatible interfaces. (Use composition (Strategy Pattern) to design your adapter)

Class Adapters use multiple inheritance to subclass the interface and the Adaptee.

The Facade Pattern provides a unified interface to a set of interfaces in a subsystem. Fascades define a higher level interface that makes the subsystem easier to use.

Design Principle – Principle of Least Knowledge – talk only to your immediate friends.

Chapter 8 – Template Method Pattern
	Coffee
	Tea

	void prepareRecipie() {
 boilWater();
 brewCoffeeGrinds();
 pourInCup();
 addSugarAndMilk();

}
	void prepareRecipie() {
 boilWater();
 steepTeaBag();

 pourInCup();
 addLemon();

}

public abstract class HotCaffeineBeverege {

final void prepareRecipie() {

boilWater();

brew();

pourInCup();

addCondiments();

}

abstract void brew();

abstract void addCondiments();

void boilWater();

void pourInCup();

}

The Template Method Pattern defines the skeleton of an algorithm in a method deferring some steps to subclasses. The templated method lets subclasses redefine certain steps of an algorithm without changing the algorithms’s structure via hooks or abstract virtual functions.

Chapter 9 – Iterator and Composite Patterns
Program to an interface, not an implementation.

The Iterator Pattern provides a way to access the elements of an aggregate object sequentially without exposing its underlying representation.

The Composite Pattern allows you to compose objects into tree structures to represent part/whole hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.

Component (Menu)
------------------------

operation()

|

add(Component)

|

remove (Component)

|

getChild(int)

|

^

|

|

|

|

|
Leaf(s) – has no children

Component (Menu)
operation()

operation()

add(Component)

remove (Component)

getChild(int)
Chapter 10 – The State Pattern
Allows an object to alter it’s behavior when it’s internal state changes. The object will appear to change it’s class.

Chapter 11 – The Proxy Pattern
Provides a surrogate or placeholder for another object to control or even measure access to it. Declare an interface mimicking the object to be proxied, and implement the interface with access controls and measurements.

Chapter 12 – Compound Patterns
Combine two or more patterns into a solution that solves a recurring or general problem. MVC (model view controller is example explained in this book)

Chapter 13 – Better Living With Patterns
A Pattern is a solution to a problem in a context.

C = Class

O = Object

	Creational
	Behavioral
	Structural

	Singleton(O)

Builder(O)

Prototype(O)

Factory Method(C)

Abstract Factory(O)
	Mediator

Visitor(O)

Iterator(O)

Template Method(C)

Command(O)

Memento(O)

Interpreter(C)

Observer(O)

Chain of Responsibility(O)

State(O)

Strategy(O)
	Proxy(O)

Decorator(O)

Composite(O)

Fascade(O)

Bridge(O)

Flyweight(O)

Adapter(C)

Thinking In Patterns
1) solve the problem, don’t look for a way to use patterns

2) to use patterns, think through the consequences for the rest of your design

3) use a pattern even when a simpler solution would work when you expect aspects of a system to vary

4) add patterns to deal with practical change that is likely to happen, not hypothetical change that may happen
5) books have been written on refactoring to patterns

6) center your thinking on design, not patterns

Builder

Chain of Responsibility – to give more than one object a chance to handle a request

Flyweight – when one instance of a class can be used to provide “virtual instances”

Interpreter – use to make a simple language

Mediator – centralize complex communication and control between related objects

Memento – goals are

1) saving the important state of a systems key object

2) maintaining the key object’s encapsulation

Prototype – when creating an instance of a given class is either expensive or complicated. In Java this means calling clone() on an instance you already have.

Visitor – When you want to add capabilities to a composite of objects, and encapsulation is not important.

Bridge Pattern

Concrete Remote {

nextChannel() { setChannel (currentStation + 1) }

}

|

|

V

class RemoteControl {

Tv tv; --------------------------------------

setChannel(Channel channel) {
|

tv.tuneChannel(channel)
|

}

|

}

|

|

class Tv {
<-----------------------------------

tuneChannel()

}

class Sony : public Tv {

}

class RCA : public Tv {

}

Anti-Patterns tell you what is known NOT to work.

GoF Gamma, Helm, Johnson, Vlissides “Design Patterns” 1995 was the birth of the patterns field.

“A Pattern Language: The timeless way of building” Christopher Alexander

The Portland Patterns Repository http://c2.com/cgi/wiki?WelcomeVisitors
The Hillside Group http://hillside.net (resources, conferences)

