Effective STL -- Scott Meyers – ISBN 0-201-74962

Chapter 1: Containers

1) Choose your containers with care

Standard STL sequence containers – vector, string, deque, and list

Standard STL associative containers – set, multiset, map, and multimap

Nonstandard sequence containers – slist (singly linked list), and rope (heavy duty string) See Item 50.

Nonstandard associative containers hash_set, hash_multiset, hash_map, hash_multimap

Vector<char> as a replacement for string. See Item 13

Vector as a replacement for the standard associative containers. See Item 23

Standard non-STL containers including arrays, bitset, valarray, stack, queue, and priority_queue

Contiguous memory containers – vector, string, deque, rope

Node-based containers – list, slist

2) Beware the illusion of container independent code

3) Make copying cheap and correct for objects in containers since putting an object into a container puts a COPY of that object into the container. The copy constructor and the copy assignment operator are used. Using pointers is smart, but see items 7 and 33.

4) Call empty() instead of checking size() against zero since for some list implementations list may take linear time, whereas empty() always takes constant time.

5) Prefer range member functions to their single-element counterparts to avoid function call overhead, and multiple memory allocations overhead, like assign(start,finish) which is useful for vector, string, deque, and list when you want to give a container a completely new set of values, and operator= is not what you want. See item 43 on avoiding loops.

a) range construction – container::container(InputIterator begin, InputIterator end)

b) range insertion – container::insert(iterator position, InputIterator begin, InputIterator end)

c) range erasure

1) iterator SequenceContainer::erase(iterator begin, iterator end)

2) void AssociativeContainer::erase(iterator begin, iterator end)

d) range assignment – SequenceContainer::assign(InputIterator begin, InputIterator end)

6) Be alert for C++’s most vexing parse, and sidestep it with explicit declarations and parentheses.

7) When using containers of newed pointers, remember to delete the pointers before the container is destroyed

8) Never create containers of auto_ptrs.

9) Choose carefully among erasing options, for instance, using remove() on associative containers has undefined results.

10) Be aware of allocator conventions and restrictions, such as the requirement that allocators have only static, non-reentrant data for maximum portability.

a) Make your allocator a template, with the template parameter T representing the type of objects for which you are allocating memory.

b) Provide the typedefs pointer and reference, but always have pointer be T* and reference be T&

c) Never give your allocators per-object state. In general, allocators should have no nonstatic data members

d) Remember that an allocator’s allocate member functions are passed the number of objects for which memory is required, not the number of bytes needed. Also remember that these functions return T* pointers (via the pointer typedef), even though no T objects have yet been constructed.

e) Be sure to provide the nested rebind template on which standard containers depend

f) Please see “User-Defined Allocator,” http://www.josuttis.com/cppcode/allocator.html and “The Standard Librarian: What are allocators good for?”

11) Understand the legitimate uses of custom allocators, like needless thread-safety, extreme performance or locality requirements. See Gems 3 “Custom STL Allocators” for more implementation details.

12) Have realistic expectations about the thread safety of STL containers, since the best you could hope for, not expect is that multiple readers are safe, and multiple writers to different containers are safe.

Chapter 2: vector and string

13) Prefer vector and string to dynamically allocated arrays, since you want vector to shoulder the responsibility for …

a) calling delete

b) calling delete with the correct form, unless you like undefined behavior

c) calling delete exactly once, else undefined

… in place of calling “new T[…]”. Begin, end, size, iterator, reverse_iterator, value_type, are available for free. They can pass arrays to APIs that expect them.

Check if you need concurrency control offered by string.

14) Use reserve to avoid unnecessary reallocations. Subtract size() from capacity() to see how much unoccupied memory a container has. If zero, then the next insertion will cause expensive reallocation.

15) Be aware of variations in string implementations including the number of dynamic allocations in the string constructor, the size of the object, may (many do by default) or may not be reference counted, may or may not share info on the capacity and size,

16) Know how to pass vector vand string s data to legacy APIs, namely &v[0], and s.c_str()

17) Use “the swap trick” to trim excess capacity:

vector<Type>(instance).swap(instance)

string(s).swap(s)

18) Avoid using vector<bool>, since it uses a proxy, and &v[0] won’t compile as a result, so it does not satisfy the requirements of an STL container. Consider deque<bool> though contents not passable to C API, or bitset which is in standard C++ library,

Chapter 3: Associative Containers

19) Understand the difference between equality (operator==) and equivalence (operator<) which is used to sort associative containers, since using only an equality operator would still necessitate a difference operator, thus associative containers sidestep a host of issues.

20) Specify functors for associative containers of pointers, to get what you mean.

21) Always have comparison functions return false for equal values, to avoid container corruption.

22) Avoid in-place key modification in set and multiset, rather copy the element, erase it, modify the copy, and re-insert so that correct container sorting is maintained.

23) Consider replacing associative containers with binary searches on sorted vectors, since pointer overhead can cause page faults, and locality may not be good due to non-clustering of nodes in your STL implementation

24) Choose carefully between map::operator[] and map::insert when efficiency is important

25) Familiarize yourself with the non-standard hashed containers

Chapter 4: Iterators

26) Prefer iterator to const_integrator, reverse_iterator, and const_reverse_iterator, to avoid casting issues in less carefully design STL implementations.

27) Use distance and advance to convert a containers’s const_iterators to iterators
28) Understand how to use a reverse_iterator’s base iterator
29) Consider istreambuf_iterators for character-by-character input

Chapter 5: Algorithms

30) Make sure destination ranges are big enough

31) Know your sorting options

32) Follow remove-like algorithms by erase if you really want to remove something

33) Be wary of remove-like algorithms on containers of pointers

34) Note which algorithms expect sorted ranges, like binary_search, lower_bound, upper_bound, equal_range, set_union, set_intersection, set_difference, set_symmetric_difference, merge, inplace_merge, and includes.

35) Implement simple case-insensitive string comparisons via mismatch or lexicographical_compare
36) Understand the proper implementation of copy_if
37) Use accumulate or for_each to summarize ranges

Chapter 6: Functors, Functor Classes, Functions, etc…

38) Design functor classes for pass-by-value

39) Make predicates pure functions

40) Make functor classes adaptable

41) Understand the reasons for ptr_fun, mem_fun, and mem_fun_ref
42) Make sure less<T> means operator<
Chapter 7: Programming with the STL

43) Prefer algorithm calls to hand-written loops

44) Prefer member functions to algorithms with the same names, since member functions are more efficient, correct,

45) Distinguish among count, find, binary_search, lower_bound, upper_bound, and equal_range

What you want to know
Algorithm to use on an unsorted range
Algorithm to use on a sorted range
Member function to use with a set or map
Member function to use with a multiset or multimap

Does the desired value exist?
Find
Binary_search
Count
Find

Does the desired value exist? If so, where is the first object with that value?
Find
Equal_range
Find
Find or lower_bound

Where is the first object with a value not preceding the desired value?
Find_if
Lower_bound
Lower_bound
Lower_bound

Where is the first object with a value succeeding the desired value?
Find_if
Upper_bound
Upper_bound
Upper_bound

How many objects have the desired value?
Count
Equal_range, then distance
Count
Count

Where are all the objects with the desired value?
Find (iteratively)
Equal_range
Equal_range
Equal_range

46) Consider function objects instead of functions as algorithm parameters, since function pointers can’t be inlined, but functors can, so you can expect from 50% to 160% faster performance with functors.

47) Avoid producing write-only code

48) Always #include proper headers

49) Learn to decipher STL-related compiler diagnostics by:

a) replacing typedef expansions with typedef names you are already using

b) edify and amuse your yourself by passing the following to your compilers:

list<int>::iterator i1,i2;

sort(i1,i2)

Consult “An STL Error Message Decryptor for Visual C++” C/C++ Users Journal, July 2001. This article and the software it describes are available at http://www.bdsoft.com/tools/stlfilt.html . Looks like it has been ported to many platforms.

50) Familiarize yourself with STL-related web-sites

SGI STL site:
http://www.sgi.com/tech/stl
STLPort site: http://www.stlport.org (use in debug mode during development to minimize extraneous headache)

Boost Site: http://www.boost.org
Virtual Chapter on Efficiency: Items 4,5,14,15,23,24,25,29,31,44,46

