Programming -- Technical -- Effective Cplusplus

ISBN 0-201-92488-9

1) Prefer const over #define to check types and promote visibility during debugging

2) Prefer <iostream> over <stdio.h> for automatic type safety

3) Prefer new and delete to malloc and free, since the former calls constructors and destructors

4) Prefer C++ style comments for when sometimes commented out code has comments.

5) Make sure 'new x' goes with 'delete x', and 'new x[100]' goes with 'delete [] x'

6) New Pointer in Class: Initialize or allocate memory for pointers in all constructors and assignment operators, delete existing memory in assignment operators, destroy dynamically allocated members with delete.

7) Properly handle out of memory conditions with function call specified by set_new_handler() to A) free a bit of previously held RAM so we have enough to announce the fact we're out of memory B) throw std:bad_alloc or something derived from it which will not be caught by operator new, and thus handled by code which called operator new to begin with C) free a large block allocated at startup, and warn the user RAM is low and that they should free some D) abort or exit

8) When overriding the 'new' operator, adhere to conventions like returning the right return value, calling an error-handling function when there is no memory or throwing std::bad_alloc or something derived from it, and zero memory requests (return a pointer to a single byte). Try to free up some memory. Remember, it is always safe to delete a null pointer.

Step 1) Add to class declaration

static void* operator new (size_t size);

static void operator delete (void *p); to class declaration

Step 2) Implement

class mem_exception {};

void* A::operator new (size_t size)
{
 void *p=allocate_from_pool(size);

if (p==0)

 throw mem_exception(); or throw std::bad_alloc() ;

return p;
} // A's default ctor implicitly called here

void A::operator delete (void *p)
{

release(p); // return memory to pool
} // A's dtor implicitly called at this point

9) Use static void* operator new(size_t size){ return ::operator new(size);} to avoid hiding the default form of "new" when you overload the "new" operator with more parameters.

10) Override operator "delete" if you override operator "new", to avoid spectacular crashes.

11) Declare a copy constructor and an assignment operator or any operator for classes that point to dynamically allocated memory to avoid memory leaks, errors of many kinds.

12) Prefer member initialization to assignment in constructors to assign values to const members on initialization without the compiler complaining.

13) Declare members of a class from top to bottom in the order they will be initialized in the constructor, since that is the order by which they will be handled in the initialization list, and thus you will avoid order dependency errors on class startup.

14) Make sure base classes have virtual destructors, to avoid calling only the derived destructor, if the class has at least one virtual function. Declaring every destructor virtual whether you need to or not wastes 16,32, or 64 bits per object depending on the bitness of the OS.

15) Have operator= return a reference to the left hand argument *this for each of your classes, which means your classes act the same as the built-in types, which means your classes don't introduce gratuitous incompatibilities compared to them, and also to prevent implicit type conversion calls, or both.

String& String::operator=(const String& rhs)

{

 ...

 return *this; // return reference to left-hand object

}

16) Write an assignment operator= for every class, especially each base class, lest the compiler write a crappy one for you that does not do what you mean.

17) Check for assignment to self in operator= firstly so you can avoid extra work and return immediately from the operator under that circumstance, and secondly to avoid freeing resources that might be needed for assignment immediately after. Take two string objects that point to the same block, calling delete in the assignment operator makes the assignment using strlen undefined if both rhs and *this are the same object. Object address usually works.

C& C::operator=(const C& rhs) //Address equality

{

 // check for assignment to self

 if (this == &rhs) return *this;

 ...

}

C& C::operator=(const C& rhs) // Value equality example

{

 // check for assignment to self

 if (*this == rhs) // assumes op== exists

 return *this;

 ...

}

18) Strive for class interfaces that are complete and minimal, since developers can handle 10 functions, but will flee at 100.

19) Operator>> and operator<< are never members, only non-member functions get type conversions on their left-most argument and private access is by a friend, all else are members.

20) Avoid data members in the public interface and use accessor-functions instead for consistency, access-control, abstraction, and to avoid trouble.

21) Use const whenever possible to specify to the compiler, and document your class. "mutable" makes constness irrelevant for a member.

char *p = "Hello";
// non-const pointer,

 // non-const data

const char *p = "Hello"; // non-const pointer,

 // const data

char * const p = "Hello"; // const pointer,

 // non-const data

const char * const p = "Hello"; // const pointer,

 // const data

22) Prefer pass-by-reference to pass-by-value for speed, lest objects have copies of them passed around, eating memory and CPU.

23) Don't try to return a reference, when you must return an object, since correctness is goal #1, let compiler vendors worry about making it faster.

24) Choose carefully between function overloading and parameter defaulting, choosing parameter defaulting if a certain value is used the majority of the time, and only one algorithm is ever used.

25) Avoid overloading a function on a pointer and a numerical type, to avoid a nasty ambiguity.

26) Root out casting ambiguities for overloaded functions, multiple inheritance where only a single base class has a method needs an explicit call of the base containing the method.

27) Explicitly disallow use of implicitly generated member functions you don't want like the constructor, copy constructor, destructor, and assignment operator, by having the private prototype in the class, but no definition.

28) Partition the global namespace with the 'namespace' keyword, to allow the use of common names for common things.

29) Avoid returning "handles" to internal data in the name of not violating the principle of abstraction, which can lead to corrupted data and unpredictable results.

30) Avoid member functions that return non-const pointers or references to members less privileged than themselves, to avoid giving random clients access free access to restricted data so they can shoot themselves in the foot and complain to you.

31) Never return a reference to a local object or to a dereferenced pointer initialized by new within the function, since local objects are destroyed locally, making the reference worthless, and in the case of the dereferenced "new" in the function it causes memory leaks unless the caller is super-careful, and no one is super-careful.

32) Postpone variable definitions for as long as possible to avoid needless constructor calls. For as long as possible also means to avoid construction until you have all the variables available for initialization to cash in on the efficiency of one function call to construct and initialize rather than one to construct and one to initialize. Code clarity is also improved with well chosen variable names as the arguments to a constructor.

33) Use inlining judiciously, and count on the compiler mostly. Lots of pitfalls.

34) Minimize compilation dependencies between files, by not using objects when object references and object pointers will do, by using class declarations instead of class definitions, and not #including header files in your header files, unless your header won't compile without it. Handle a.k.a. "Envelope" classes pointing to "Letter" classes rather than "Body" classes saves lots of compilation time.

35) Make sure public inheritance models an "is a" relationship.

36) Differentiate between inheritance of interface and inheritance of implementation, while making sure that default functionality must be called explicitly for function "X" by 1) making "X" a pure virtual 2) offering the user a base function called "defaultX" that must be called explicitly from “X” in the derived class. Neither make all members nonvirtual, unless the class is not to be derived, nor make them all virtual, unless it is an "interface" or "abstract" class.

37) Never redefine an inherited nonvirtual function, to avoid base or derived functionality being called depending on the cast applied to the object, which breaks the "is-a" nature of derived classes. How can something act one way with one cast, and another with another cast?

38) Never redefine an inherited default parameter value, since though inherited virtual functions are dynamically bound, their argument lists are statically bound, and you will get the base argument in the derived method.

39) Avoid casts down the inheritance hierarchy from derived to base class, to avoid tricky compiler errors without the cast, and ever tricker run-time crashes when you do cast. Use <dynamic_cast> and test the pointer for NULL if you must cast down.

40) Model "has-a" or "is-implemented-in-terms-of" through "layering" A.K.A. "composition", "containment", and "embedding", and avoid using inheritance exclusively.

41) Use templates to generate a collection of classes when the type of the objects does not affect the behavior of the class's functions. Use inheritance for a collection of classes when the type of the objects does affect the behavior of the class's functions.

42) Use private inheritance judiciously since public inheritance means an "is a" relationship, whereas private inheritance means "is implemented in terms of" as in there is no conceptual relationship and you're just reusing some code. Private inheritance means nothing during software design, it only means something during software implementation.

43) Use multiple inheritance judiciously, to avoid ambiguity.

44) Say what you mean ; understand what you are saying:

1) A common base class means common traits

2) Public inheritance means "is a"

3) Private inheritance means "is implemented in terms of" or just reusing some code.

4) Layering means "is implemented in terms of" or "has a"

45) Know what functions C++ silently writes and calls when you don't:

1) constructor

2) copy constructor that takes a const reference

3) non-virtual destructor, unless it is a class deriving from a base class that has declared it's destructor virtual.

4) Assignment operator that returns a reference to the left-hand side

46) Prefer compile and link time errors to run-time errors, by strictly enforcing type checking, among other ways.

47) Make sure you initialize non-local static objects before they are used. Better yet, make them local static objects returned from global functions, so that the function which they are local to can be used to construct them when called, thus allowing you to control when they are constructed, allowing you to construct it at the right time.

48) Pay attention to compiler warnings, since compiler writers probably know more about the language than you do.

49) Familiarize yourself with the standard library. 300 pages of bug free functionality can only help you ship on time.

 <iostream.h> will continue to be supported in the global namespace only.

 <iostream> has same as above but in the std namespace only, except for the few library components that were modified from iostream.h

 <stdio.h> are in both global and std namespaces

 <cstdio> has C library functionality, but in the std namespace only

 <string.h> is the old char* library

 <string> std wrapped C++ header for new string classes

 <cstring> std wrapped version of the old C header string.h

 The rest is easy!

 Every class is a templated class.

 Iostreams, strings, containers, algorithms, support for internationalization, support for numeric processing, and diagnostic support.

 The STL is a set of conventions, thus you can take advantage of the STL compliant containers, algorithms, and iterators written by others, just as they can take advantage of yours.

50) Read more to improve your understanding of C++.

Read "The Design and Evolution of C++" by Bjarne Stroustrup (Addison Wesley 1994) to see what features were added to C++, in what order, and why.

http://www.research.att.com/~bs/homepage.html

http://www.open-std.org/jtc1/sc22/open/n2356/

http://www.cantrip.org/cpp.html

 "The Annotated C++ Reference Manual" by Margaret Ellis and Bjarne Stroustrup written 7 years before the standard in 1990, has annotations that say why a lots of C++ beahves the way it does. This is the good part of it.

