Programming --- Technical --- C++ For Game Programmers

ISBN: 1-58450-227-4

By Noel Llopis

Section I : Tapping the Power of C++

Chapter 1 --- Inheritance --- START

1) Marking method virtual tells compiler to use the type of the object to resolve whether overrides should be used, rather than the type of the pointer.

2) When modeling an is-a relationship, use inheritance. When modeling a has-a relationship, use containment.

3) Only inherit to change behavior of objects, not to change data.

4) Only a slight performance hit(2 dereferences) for calling virtual function

5) 1 vtable per class, not per object

6) Usually, the pointer to the vtable is the 1st entry for the object, SO we still pay the cost of the size of a pointer for each object when we want polymorphism.

Chapter 1 --- Inheritance --- END

Chapter 2 --- Multiple Inheritance --- START

7) Avoid diamond shaped inheritance trees, since base class appears twice, which causes lots of ambiguity problems when explicitly calling base functions.

8) Perhaps composition with the Strategy Design Pattern could be used in place of multiple or virtual inheritance.

9) use static_cast<base_class*> when castin up the hierarchy, and if it will fail, it will at COMPILE time

10) failed dynamic_cast<some_other_class*> returns a NULL, since if it will fail, it will do so at RUN time

11) RTTI needs to be enabled for dynamic_cast

12) casting to and from 1st parent class is free in multiple inheritance.

Chapter 2 --- Multiple Inheritance --- END

Chapter 3 --- Constness, References, and a few loose ends --- START

13)

int* pData1 = ints and pointer can be modified

const int* pData2 = ints const, pointer can be modified

int * const pData3 = ints can be modified, pointer const

const int * const pData4 = ints and pointer const

14) To use const effectively, use it everywhere to document and protect

15) Member variables marked mutable, can be changed in functions marked const or not

Chapter 3 --- Constness, References, and a few loose ends --- END

16) References are cleaner to use, and can never be NULL, though they can be invalid, and it is safe to assume while working with a reference that someone else will free it.

17) "Studies have shown that a very large percentage of bugs in C++ are caused by memory leaks." (1/3 according to Code Complete)

18) minimize casting to maximize compiler checks

19) static_cast<new_type>(expression)

20) const_cast<new_type>(const expression) To cast away constness. If you find yourself casting away constness in your own programs, you should rethink your design.

21) reinterpret_cast<new_type>(exp) Yeeee-haw!

22) dynamic_cast<new_type>(exp)

23) Use exceptions rather than explicit error checking for less mess, greater flexibility, easier passing of errors up the stack, catching errors in constructors and destructors, and throwing just about any kind of object as an exception. Even a hierarchy of exceptions is possible.

24) Use auto_ptr<type> to auto delete pointers in failed constructors. auto_ptr hands off when copied, can be acquired with .get() and released with .release().

25) It is NEVER safe to put auto_ptr into containers, since copies of auto_ptr are not equivalent. Const auto_ptr never loses ownership. http://www.gotw.ca/publications/using_auto_ptr_effectively.htm

26) There are 2 ways compilers handle exceptions 1) uses a very little extra memory and a little CPU overhead per try-catch 2) no CPU overhead per try-catch, but requires "significant" amount of memory to deal with exceptions

27) Exceptions are exceptional, don't use everywhere!

Section II : Performance and Memory

Chapter 6 -- Performance -- START

28) May vtable cache misses never plague you, should you have lots of classes, and tiny data cache.

29) Inline judiciously to avoid blowing out the instruction cache.

30) Avoid copys, by passing references instead of passing objects and calling the copy constructor.

31) Use "explicit" in front of a constructor to avoid it being called when you don't expect it.

32) Privately declare copy constructors to prevent unwanted copying at compile time.

33)

 Base A

 |

 V

Derived Class B

 |

 V

Derived Class C

new C = construct A, then B, then C

delete C = destroy C, then B, then A

34) USE constructor initialization lists

35) Cache lines of size 'x' need memory aligned at size 'x'

Pedriana, Paul "High Performance Game Programming in C++" Conference Proceedings, 1998 Game Developers Conference.

http://www.tantalon.com/pete/cppopt/general.htm#BadOptimizationStrategies

Specific references on return value optimization:

More Effective C++, Scorr Meyers

C++ Primer, 3rd edition by Stanley Lippman

Inside the C++ Object Model

Patterson and Hennessy on Hardware

Chapter 6 -- Performance -- END

Chapter 7 -- Memory -- START

36) Stack = order, sequenced Heap = leaks, fragmentation

37) Pools feature 1) no performance hit 2) no external fragmentation 3) spatial coherence 4) all objects can be wiped at once

Ravenbrook, "The Memory Management Reference" http://www.memorymanagement.org/

Johnstone, Wilson "The Memory Fragmentation Problem: Solved?" Proceedings of the International Symposium on Memory Management. ACM Press 1998.

Hixon et al. "Play By Play: Effective Memory Management" Game Developer Magazine, Feb 2002

Game Developer Magazine November 1999 "The Big Squeeze: Resource Management Driving your Console Port"

For a good and detailed explanation of a custom small object allocation system see "Modern C++ Design" Addison-Wesley 2001 Alexandrescu

www.boost.org/libs/pool/doc/index.html

Chapter 7 -- Memory -- END

Chapter 8 -- STL -- START

38) Why use the STL?

 1) Code Reuse for containers, algorithms, searches just drop in

 2) Everyone else is, so new hires get up to speed faster

 3) Performance? YES! Written for speed and correctness.

39) Why not use the STL

 1) Tough to step into

 2) Tough to find compile, link, and run errors when incorrectly used

	
	Vector
	Deque
	List
	Set and Multiset
	Map and Multimap
	Hashes (not all STL implementations have them yet)

	Brief Description
	Auto-resizeable C-array.
	A vector to arrays of elements, offering fastest insertion at front and back.
	Doubly linked list.
	Balanced and sorted binary tree of objects. The Set will only keep one instance of each object. A Multiset will keep multiple copies of the same object if it is inserted multiple times.
	Balanced and sorted binary tree of values that can be searched for with respective keys. Maps allow only one instance of a given key, while Multimaps allow many instances.
	Hash_set, hash_multiset, has_map, hash_multimap.

	Insert/Delete at the back
	O(1)
	O(1)
	O(1)
	O(ln N)
	O(ln N)
	O(1)-O(N)

	Insert/Delete at the front
	O(N)
	O(1)
	O(1)
	O(ln N)
	O(ln N)
	O(1)-O(N)

	Insert/Delete in the middle
	O(N)
	O(N)
	O(1)
	O(ln N)
	O(ln N)
	O(1)-O(N)

	Memory Allocation
	Rarely, only to grow
	Periodically, during normal usage
	Periodically, while doing insertions and deletions
	Periodically, while doing insertions and deletions
	Periodically, while doing insertions and deletions
	Periodically, while doing insertions and deletions

	Traversal performance
	Fastest (like C array)
	Almost as fast as a vector
	Much slower than a vector
	A bit slower than a list
	A bit slower than a list
	A bit slower than a list

	Find
	O(N)
	O(N)
	O(N)
	O(ln N)
	O(ln N)
	O(1)-O(N)

	Sequential memory access
	Yes
	Somewhat; has several ordered blocks
	No
	No
	No
	No

	Iterator invalidation
	After an insertion or deletion
	After an insertion or deletion
	Never
	Never
	Never
	Never

	Memory overhead
	12-16 bytes total
	Header of 16+ bytes; initial memory block could be 4KB
	8-12 bytes plus 8-12 bytes per element
	8-12 bytes plus 8-12 bytes per element
	8-12 bytes plus 8-12 bytes per element
	Very implementation dependent; easily 8-16 bytes per element for a well-distributed hash table

Scott Meyers, Effective STL

http://www.sgi.com/tech/stl/index.html

Chapter 8 -- STL -- END

Chapter 9 -- STL Algorithms and Advanced Topics -- START

functor = function class, that can be called as a function. It has operator() implemented. The compiler and CPU pipeline can optimize their calling much better than they can a function pointer.

template<typename T>

class EvenNumbersFirst{

public:

 bool operator()(T a, T b) const { return (fabs(a)<fabs(b)); }

};

Functor Adaptors

 mem_fun: works on member functions through a pointer

 mem_fun_ref: works on member functions through object or reference

 ptr_fun: works on global functions through a global pointer

vector< SceneNode*> nodes ;

//...

sort(nodes.begin(), nodes.end(), mem_fun(&SceneNode::RenderFirst));

vector< SceneNode> nodes ;

//...

sort(nodes.begin(), nodes.end(), mem_fun_ref(&SceneNode::RenderFirst));

Algorithms - templated functions of common operations

Nonmutating algorithms include ...

find - linear time performance standalone algorithm probably slower than container member function

count - count all elements that match a particular value

Mutating

remove(first, last, value)

test = 3,1,4,1,5,3,1,8

newEnd = remove(test.begin(), test.end(), 1) ;

test = 3,4,5,3,8,undef,undef,undef

(newEnd points to 1st "undef")

test.erase(newEnd, test.end());

reverse(first, last)

rotate(first, middle, last) - rotated until middle element is at 1st

random_shuffle(first,last)

class HigherScore{

public:

 bool operator()(const Player &p1, const Player &p2) {

 return(p1.GetScore() > p2.GetScore()) ;

 }

vector<const Player*> players ;

// ...

sort(players.begin(), players.end(), HigherScore()) ;

STL's "sort" is not "stable" meaning 2 equal value elements will be in undefined positions relative to each other. Use "stable_sort" which runs in O(N (lg N)2) time.

partial_sort is used for the 1st N elements

STL Allocators - Effective STL, Meyers

Art of Computer Programming 3, Knuth

http://www.sgi.com/tech/stl/string_discussion.html

Game Programming Gems 3 on Allocators

The C++ Standard Library, Josuttis, 1999

Chapter 9 -- STL Algorithms and Advanced Topics -- END

Chapter 10 -- Abstract Interfaces -- START

1) Compiler faster

2) reduce platform dependencies

3) enable run-time switches

Use the factory pattern to completely separate platform specific implementation from rest of code.

If you have many functions that you want to include in your abstract interface, have a common implementation instead.

Abstract Interfaces As Class Characteristics

Hardwired Types are not maintainable easily

Leave it up to the object - every object needs to implement IsRenderable(), and each characteristic added means we must modify all existing objects

QueryInterface - every object that implements an abstract interface, does so in a derived/common class

void* GameEntityPhysical::QueryInterface(InterfaceEnum interface) const

{

 if (interface == IRENDERABLE)

 {

 IRenderable* pRender = static_cast<IRenderable*>(this);

 return (void*)(pRender)

 }

 return NULL;

}

void RenderWorld() {

 for(each object in the world) {

 void* pInterface ;

 pInterface = object.QueryInterface(IRENDERABLE) ;

 if(pInterface != NULL) {

 IRenderable* pRend = static_cast<IRenderable*>(pInterface) ;

 pRend->Render();

 }

 }

}

Chapter 10 -- Abstract Interfaces -- END

Chapter 11 -- Plug Ins -- START

1) abstract base class, hopefully a hierarchy

2) export only a global factory function to minimize the number of exports

PLUGINDECL IPlugin* CreatePlugin(PluginMnager& mgr)

{

 return new PluginExporterHTML(mgr)

}

3) make the export of #2 extern "C"

#ifdef DLL_EXPORT

#define PLUGINDECL __declspec(dllexport)

#else

#define PLUGINDECL __declspec(dllimport)

#endif

4) make #2 declared PLUGINDECL and #define it to __declspec(dllexport) when exporting and __declspec(dllimport) when importing

extern "C" PLUGINDECL IPlugin* CreatePlugin(PluginManager& mgr) ;

(Using "CreatePlugin" as the standard factory name across all plugins is a good idea).

5) load DLL by name into handle

HMODULE hDLL = ::LoadLibrary(filename.c_str());

6) load factory from #2 by string into function pointer

CREATEPLUGIN* pPluginFactoryFunction = (CREATEPLUGIN) ::GetProcAddress(hDLL, "CreatePlugin");

7) call factory with Plugin manager reference to get pointer to Plugin

IPlugin* pPlugin = pPluginFactoryFunction (*this)

Chapter 11 -- Plug Ins -- END

Chapter 12 -- RTTI -- START

1) Don't rely on it, if so, only for special cases (tank joins with helicopter to form super-robot), avoid RTTI for common cases

2) Dynamic casts that fail return a NULL pointer

3)

Controllable* pCont = new GameAvatar ;

const type_info& info = typeid(*pCont) ;

char* pszClassName = info.name() ;

4) to efficiently compare two class types, compare the value returned by the typeid operator for each.

5) if typeid is used on a non-polymorphic function, it returns information for the type of the reference, not the type of the object

6) using RTTI sucks space per class, not per object. 30-50 bytes.

The Simplest Solutions for Custom RTTI w/o Compiler Support

1) manually enter strings in virtual functions (slow, bloated)

2) use constants in virtual functions

3) use address of static member variable in each class

class RTTI

{

 public:

 RTTI(const String& name) : m_className(name) {} ;

 const string& GetClassName() const { return m_className; }

 private:

 string m_className ;

};

class GameEntity

{

 public:

 static const RTTI s_rtti ;

 virtual const RTTI& RTTI() const { return s_rtti ; }

 // ...

 // Rest of class goes here

}

Adding Single Inheritance

Make RTTI constructor take parent class also and dereference until NULL if base class is desired, or once if parent is desired.

Chapter 12 -- RTTI -- END

Chapter 13 -- Object Creation and Management -- START

1) C++ is polymorphic, but "new" cannot be polymorphic

2) Making a factory object, only concentrates ugly "switch" code and bunch of centralized knowledge, though it's nice that it's all in one place.

3) Distributed factory avoids hardwiring object types into source code

4) Factory takes (type ID) --> (class)

5) DISTRIBUTED factory (type ID) --> creator Objects

class CreatorOfCamera : public CreatorBase

{

 public:

 virtual ~CreatorOfCamera() {}

 virtual GameEntity* Create() const { return new GameCamera; }

};

class EntityFactory

{

 public:

 GameEntity* CreateEntity(ObjectType type);

 private:

 typedef map<ObjectType, CreatorBase*> CreatorBaseMap ;

 CreatorBaseMap m_creatorMap ;

};

GameEntity* EntityFactory::CreateEntity(ObjectType type)

{

 CreatorMap::iterator it = m_creatorMap.find(type) ;

 if(it == m_creatorMap.end())

 {

 return NULL ;

 }

 CreatorBase* pCreator = (*it).second ;

 return pCreator->Create();

}

6) The entity factory in place, now we can create objects dynamically without knowing anything about their specific class type.

ObjectType type = LoadTypeFromDisk();

GameEntity* pEntity = factory.CreateEntity(type) ;

7) We also need to tell the factory about what types of objects we support and pass one creator object for each of those types.

bool EntityFactory::Register(ObjectType type, CreatorBase* pCreator)

{

 CreatorMap::iterator it = m_creatorMap.find(type) ;

 if(it != m_creatorMap.end()) {

 delete pCreator ;

 return false ;

 }

 m_creatorMap[type] = pCreator ;

 return true ;

}

Just create a new class derived from CreatorBase, and call EntityFactory::Register()

factory.Register(GAMEENTITY, new CreatorEntity);

factory.Register(GAMECAMERA, new CreatorCamera) ;

factory.Register(GAMEPLAYER, new CreatorPlayer) ;

factory.Register(GAMEACTOR, new CreatorActor) ;

Using a templated Factory

template< class Base >

class Factory

{

 public:

 Base* Create(ObjectType type) ;

 bool Register(ObjectType type, CreatorBaseTemplate<Base> *pCreator) ;

 private:

 typedef std::map<ObjectType, CreatorBaseTemplate<Base> *> CreatorMap ;

 CreatorMap m_creatorMap ;

};

The creator classes will also have to be templated.

template<class Base>

class CreatorBaseTemplate

{

 public:

 virtual ~CreatorBase() {}

 virtual Base* Create() const = 0 ;

}

template<class Product, class Base>

class Creator : public CreatorBaseTemplate<Base>

{

 public:

 virtual Base * Create() const { return new Product; }

}

With these templates, making new factories and creators is easy:

Factory<GameEntity> factory;

factory.Register< GAMECAMERA, new Creator<GameCamera,GameEntity>);

factory.Register< GAMEENTITY, new Creator<GameEntity,GameEntity>);

GameEntity* pEntity = factory.Create(GAMECAMERA);

The templated factory falls short if your objects need custom construction.

Solutions to "Shared Object" Problem and the Dangling Pointers it Creates

1) No object sharing at all - Keep it simple

2) Ignore the Problem - with no dynamic memory, you could get away with this, but there are no easy fixes if you have a problem though.

3) Leave the matter to the owner of the object - lots of people can point to it, but only the owner can create, manage, and delete it.

4) Use the Observer Pattern

5) transfer ownership

6) Reference Counting

 a) Implementation - AddRef(){ m_iRef++ ; } Release(){ m_iRef-- } ;

 b) Try to AddRef() and Release() at the same level if possible

 c) Drawbacks

 1) one needs to call AddRef() and Release() correctly

 2) early release of needed assets is problematic, the solution being to keep a reference in the Resource manager

 3) clutter of AddRef() and Release()

 4) returning pointers as the return value, rather pass back needed value as a parameter (Candy Machine Interface)

 5) Handles – use top 8-16 bits for a checksum pattern which will distinguish the handle from a random number

 6) Smart Pointers

a) Handle-Based Smart Pointers – see Gems 3, use handle, get smart pointer for all safety of handles, convenience of pointers

b) Reference counting Smart Pointers –

Gems2, “A Game Entity Factory”

Gems “A Generic Handle Based Resource Manager”

More Effective C++

Gems 3 “Handle Based Smart Pointers”

Chapter 13 -- Object Creation and Management -- END

Chapter 14 -- Object Serialization -- START

Problems

1) Can’t save and reload pointers

2) Correlating two data types

3) Initializing each entity

What We Need – if it never changes, we don’t need to save it, we only need save instance data

Have a fast binary format for shipping, and an XML or text format for debugging

Implementation

1) Streams – make abstract base with Read Write, SetPos, GetPos, Reset, Read(Int, Float, String), Write(Int,Float,String) and helpers for Vector, Matrix, Point3D’s

2) Saving – call “Serialize() on each entity, and have each decide how to save itself, and have each object call it’s parents with the custom RTTI system

3) Pointers double as unique Ids

Gems 3 “Save Me Now!”

Chapter 14 -- Object Serialization -- END

Chapter 15 – Dealing With Large Projects -- START

Logical vs. Physical Structure

Logical = classes, algorithms, data

Physical = files and directories

Header Files

1) use forward declarations to avoid including them

2) use PIMPL method to shunt implementation to CPP file, to avoid recompiling masses of files due to a header change

3) use include guards to avoid multiple declarations

Large Scale C++ Design, John Lakos

Herb, Stutter Exceptional C++, 2000, Addison-Wesley

Chapter 15 – Dealing With Large Projects – END

Chapter 16 – Crash Proofing Your Game -- START

Assert

Check program for consistent state

Sanity Check complicated algorithms

Don’t Assert

Opening or loading a non existent file, wrong format, or old version

‘bad’ data

game object not loading right

API arguments (When arguments to functions are wrong internally, at API level give error code and TTY)

Long-Running machine crashes

Memory leaks and fragmentation

32 bit clock drift when using floats, 32 bits of integer in milliseconds is enough for 49 days

reset as many systems between levels as possible

Deal With ‘Bad’ Data

Assert in debug or dev

Cope in Ship

Tip: switch to the debug version periodically to make things pop up

Chapter 16 – Crash Proofing Your Game -- END

