C++ Common Knowledge - Stephen C. Dewhurst - ISBN 0-321-32192-8

Data Abstraction – Choose a descriptive name, list the operations from initialization to cleanup, design an interface even writing some code for it, and implement it while planning for change.

Design Patterns – Named data flow sequence which facilitates understanding among developers. Strategy, Observer, Decorator, Factory, Command, Adapter or Facade, Template Method, Iterator, Composite, State, and Proxy are among the most commonly used, though more are listed at http://en.wikipedia.org/wiki/Design_Patterns_(book)#Creational_patterns. A free reference card is available at http://www.mcdonaldland.info/files/designpatterns/designpatternscard.pdf.

STL – Containers, algorithms, and interoperability between them through iterators.

References Are Aliases, Not Pointers – References must be non-NULL, unlike pointers.

Array Formal Arguments – Arrays are always passed around as pointers unless you prototype it as “int (&array)[12]”

Const Pointers and Pointers To Const – if “const” on left of “*” the data pointed to is const, if on the right of “*” the pointer is const.

Pointers To Pointers – Prefer references to pointers “*&”, for clarity.

New Cast Operators – They are obvious, and specific.

Meaning of a Const Member Function – Can mod data in an array, or if member data declared mutable.

The Compiler Puts Stuff In Classes – Like virtual table pointers which are placed on a compiler-dependent basis. Therefore, use copy constructors and assignment operators, and not memcpy().

String Assignment and Initialization are Different – One is allocate and assign and copy, the other is delete old , and allocate and copy new and assign.

Copy Operations – Use a copy constructor or an assignment operator.

Pointers to Class Members Are Not Pointers – Pointers can refer to static members of a class. An offset to a member of a class instance can be specified with pointer notation.

Pointers to Member Functions Are Not Pointers – They are offsets.

Function Objects – Overloads operator() for cleaner syntax.

Commands and Callbacks – Use the Design Pattern known as the Command Pattern instead of a function pointer for more information.

STL Function Objects – Unlike function pointers, they allow inlining.

Overloading and Overriding are Different – Overloading when two or more functions in the same scope have the same name and different argument lists. Overriding is what happens when a derived class function is implemented with the same name and signature as the virtual base function it derives from.

Template Method – Nothing to do with C++ Templates. It's a Design Pattern for an Abstract Base Class designer to lay out what functionality the derived class implementor is to write.

Namespaces – Decrease complexity in name space collisions.

Member Function Lookup – 1) Look up the function name in the nearest scope. 2) Chooses the function with the closest matching signature. 3) Checks if you have access to that function.

Meaning of a Pointer Comparison – Pointers to derived and base types are adjusted by the compiler for comparisons.

Virtual Constructors and Prototype - Polymorphic creation of and copying of objects in C++ analogous to polymorphic destruction.

Covariant Return Types – Methods in derived class can have another variable type from virtual base.

Preventing Copying With Compiler Generated Classes – Declare copy constructor and assignment operator private, and leave them undefined.

Manufacturing Abstract Bases – Have a pure virtual function, or declare constructors protected to allow derived object creation, but prevent creation of the now “abstract” base.

Restricting Heap Allocation For An Object – Overload operators new and delete in the class, and mark them protected. Make array new and array delete private and undefined.

Restricting Stack Allocation For An Object – Make destructor private, which makes the call to it implicit at compile time.

Placement New – Call constructors on blocks previously allocated.

Class Specific Memory Management – Override new and delete for a particular class for stunts like pooling.

Matching New and Delete – Make sure calls to new are matched by calls to delete. Make sure calls to array new are matched by calls to array delete.

Exception Safety Axioms – 1) Exceptions are Synchronous 2) It is safe to destroy (Scott Meyers begs to differ) 3) Swap used by STL doesn't throw exceptions, so the STL is assumed to be exception safe … right?

Exception Safe Functions – First, do anything that could cause an exception, and when they succeed, THEN change important states, and then use operations that can't throw an exception to clean up.

Resource Acquisition Is Initialization – (RAII) Associate resource lifetime with object lifetime. No early returns, things that make early returns unwieldy, functions that can throw exceptions, anything that can avoid the resource recovery code at the end of the function.

New, Constructors, and Exceptions – Overloading new and delete or array new and array delete, means the compiler will automatically call delete when new fails in the constructor after allocation.

Smart Pointers – Make it harder to leak memory.

auto_ptr – Will not copy. Use another smart pointer for this.

Pointer Arithmetic – Always scaled to the size of the object pointed to.

45 – Template Terminology

